So sánh \(m^2\) và \(m\) nếu :
a) \(m>1\)
b) \(m\) dương nhưng nhỏ hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a>b\Rightarrow3a>3b\Rightarrow-3a<-3b\)
b) \(m-5>m-7\)
c) Gọi phân số cần tìm là \(\frac{a}{a+3}\)
Ta có \(\frac{a+2}{a+5}=\frac{1}{2}\Rightarrow2a+4=a+5\Rightarrow2a-a=5-4\Rightarrow a=1\)
Vậy phân số cần tìm là \(\frac{1}{4}\)
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
a. Nếu \(m>1\) thì \(m^2>m\) (nhân cả hai vế với số dương m)
Vậy nếu \(m>1\) thì \(m^2>m\)
b. Nếu m dương nhưng m<1 thì m2<m