Cho tam giác ABC có BA = 2AB , gọi M là trung điểm của BC , D là trung điểm BA trên tia đối cưa tia DA lấy E sao cho DA = AE . Chứng minh:
a. tam giác DAB = tam giác DEM
b. AB // ME
c. tam giác MEC cân
d. AC = 2AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB và ΔDEM có
DA=DE
góc ADB=góc EDM
DB=DM
=>ΔDAB=ΔDEM
b: ΔDAB=ΔDEM
=>góc DAB=góc DEM
=>AB//ME
TL:
Giải:
a) Xét tam giác DAB và tam giác DEM, có:
BD=MD(M là trung điểm BM)
AD=ED (gt)
Góc BDA = Góc MDE (Hai góc đối đỉnh)
⇒ΔDAB=ΔDEM(c.g.c)
b) Có: ΔDAB=ΔDEM (câu a)
⇒ Góc BAD=gócMED(Hai góc tương ứng)
⇒AB//ME (Vì có hai góc so le trong bằng nhau)
c) Theo đề ra, ta có:
BC=2AB⇔AB=1/2BC (1)
Lại có: M là trung điểm BC
⇒MC=1/2AB (2)
Từ (1) và (2) => AB=MC
Mặt khác: AB=ME (ΔDAB=ΔDEM)
⇒MC=ME
⇒ΔMEC cân tại M
Học tốt
Bạn tự vẽ hình nha
Tam giác ABC có BC = 2AB
mà BM=MC = BC:2
nên AB=BM=MC
Xét tam giác ADB và tam giác DEM
có DA=DE (GT)
góc ADB=góc EDM (đối đỉnh)
DB=DM (GT)
suy ra tam giác ADB =tam giác EDM (c.g.c) (1)
b) Từ (1) suy ra góc BAD=góc MED
mà góc BAD so le trong với góc MED
suy ra AB//ME
c) Từ (1) suy ra AB=ME
mà AB=MC
suy ra ME = ME
suy ra tam giác MEC cân tại M
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.
BA=2BA ?????
Đề sai hoàn toàn...