Cho tứ giác ABCD có E , F , K là trung điểm AD , BC , BD . Chứng minh rằng nếu E , K , F thẳng hàng thì ABCD là hình thang
Vẽ hình và giải chi tiết giùm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ΔABD có DE = EA và DK = KB
⇒ EK là đường trung bình của ΔDAB
⇒ EK // AB
+ Hình thang ABCD có: AE = ED và BF = FC
⇒ EF là đường trung bình của hình thang ABCD
⇒ EF // AB// CD
+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.
Xét ΔDAB có
E là trung điểm của AD
K là trung điểm của BD
Do đó: EK//AB
hay EK//CD
Xét ΔBDC có
K là trung điểm của BD
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔBDC
Suy ra: KF//DC
Ta có: EK//DC
KF//DC
mà KE và KF có điểm chung là K
nên E,K,F thẳng hàng
Ta có E và F là trung điểm của AD và BC
=> EF là ĐTB của hình thang ABCD
=> EF//AB//CD
Do F,K là trung điểm cuả BD và BC
=> FK là ĐTB của tam giác ADC
=> FK//CD
Do E và K là trung điểm của AD và BD
=> EK là ĐTB của tam giác ABD
=> EK//AB
Mà AB//CD
=>EF ; EK ; FK cùng // với AB
=> E ; F ; K thẳng hàng
Bài giải:
Ta có EA = ED, KB = KD (gt)
Nên EK // AB
Lại có FB = FC, KB = KD (gt)
Nên KF // DC // AB
Qua K ta có KE và KF cùng song song với AB nên theo tiên đề Ơclit ba điểm E, K, F thẳng hàng.
\(\Delta ADB\) có:\(AE=DE\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow AB\) // \(EF\)(theo đlí 2 về đường trung bình của tam giác) (1)
\(\Delta BDC\) có:\(BK=KC\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow FK\) // \(CD\)(theo đlí 2 về đường trung bình của tam giác)
Mà \(CD\) // \(AB\Rightarrow FK\) // \(AB\) (1)
Từ (1) và (2), suy ra:
\(AB\) // \(EF,FK\)
\(\Rightarrow E,F,K\) thẳng hàng (theo tiên đề Ơclit )