giúp tôi giải
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2003.2004}{2003.2004}=1\)
1+1=2
Vậy \(\frac{2003.2004}{2003.2004}\)+1 > \(\frac{2004}{2005}\)
khong co so abc vi so co 3 chu so nhan voi h khong the bang chinh no
Xét TH1: abc\(\ne\)0:
\(5=\frac{abc}{abc}\Rightarrow5=1\)(Vô lý)
Xét TH2: abc=0:
0*5=0(luôn đúng)
Vậy với abc=0 thì 5*abc=abc
a: Thay x=0 và y=5 vào (d), ta được:
m*0+5=5
=>5=5(đúng)
=>ĐPCM
b: x1<x2; |x1|>|x2|
=>x1*x2<0
PTHĐGĐ là:
x^2-mx-5=0
Vì a*c<0
nên x1,x2 luôn trái dấu
=>Với mọi m
1. Because of studying hard, I passed the exam
2. Because of Hoa's richness, she could buy that house
3. Because of bad grades, she failed the University entrance exam
4. Because of the accident, I was late
5. Because of the terrible traffic, we didn't arrive until 6 o'clock
\(\frac{4}{9}:\frac{5}{7}=\frac{4}{9}\times\frac{7}{5}=\frac{4\times7}{9\times5}=\frac{28}{45}\)
\(\frac{5}{7}:\frac{4}{9}=\frac{5}{7}\times\frac{9}{4}=\frac{5\times9}{7\times4}=\frac{45}{28}\)
\(\frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times4=\frac{4}{3}\)
\(\frac{1}{4}:\frac{1}{3}=\frac{1}{4}\times3=\frac{3}{4}\)
Bài 1:
a. \(R=p\dfrac{l}{S}=1,10.10^{-6}\dfrac{30}{0,3\cdot10^{-6}}=110\Omega\)
b. \(I=U:R=220:110=2A\)
Bài 2:
a. \(R=R1+R2=30+50=80\Omega\)
b. \(I=I1=I2=0,25A\left(R1ntR2\right)\)
\(\left\{{}\begin{matrix}U1=I1\cdot R1=0,25\cdot30=7,5V\\U2=I2\cdot R2=0,25\cdot50=12,5V\\U=IR=0,25\cdot80=20V\end{matrix}\right.\)
Câu 1.
a)\(R=\rho\cdot\dfrac{l}{S}=1,1\cdot10^{-6}\cdot\dfrac{30}{0,3\cdot10^{-6}}=110\Omega\)
b)\(I=\dfrac{U}{R}=\dfrac{220}{110}=2A\)
Câu 2.
a)\(R_{AB}=R_1+R_2=30+50=80\Omega\)
b)\(I_1=I_2=I_A=0,25A\)
\(U_1=R_1\cdot I_1=30\cdot0,25=7,5V\)
\(U_2=R_2\cdot I_2=50\cdot0,25=12,5V\)
\(U_{AB}=U_1+U_2=7,5+12,5=20V\)
Câu 3.
a)\(R_{AB}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{600\cdot900}{600+900}=360\Omega\)
b)\(U_1=U_2=U_m=220V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{220}{600}=\dfrac{11}{30}A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{220}{900}=\dfrac{11}{45}A\)
\(I_m=I_1+I_2=\dfrac{11}{30}+\dfrac{11}{45}=\dfrac{11}{18}A\)
1. In spite of being a poor student, he studied very well
2. Despite the bad weather, she went to school on time
3. Despite having a physical handicap, she has become a successful woman
4. In spite of having not finished the paper, he went to sleep
5. Despite having a lot of noise in the city, I prefer living there
1. In spite of being a poor student, he studied very well
2. Despite the fact that the weather was bad, she went to school on time.
The concerts are usually held at the university.
The poem is written in1823 by clement clark
This machine hasn't been used for years
French and E is spoken in canada
The telephone was invented in1876 by bell
Something must be done for these poor man
Liz was invited to the rice-cooking festival by Ba
Your bicycle will be repaired tomorrow afternoon
Is rice exported to britain by your country?
Football is played all over the world
mình thấy là như này :
mik thì ik trả lời , làm bài -> các bn ý chọn thì chọn thì chọn kg thì thôi ( giúp )
còn mấy bn 2000- 3000
chác biết kiếm đâu ra chằng bao giờ thấy trả lời nhưng lại đứng đc trong bảng xếp hạng ???
Bài 2 :
a, \(\sqrt{\left(x-5\right)^2}=7\Leftrightarrow\left|x-5\right|=7\)
TH1 : \(x-5=7\Leftrightarrow x=12\)
TH2 : \(x-5=-7\Leftrightarrow x=-2\)
b, \(\sqrt{2x-4}=12\Leftrightarrow2x-4=144\)ĐK : x >= 2
\(\Leftrightarrow2x=148\Leftrightarrow x=74\)
c, \(\sqrt{25x-25}-2\sqrt{9x-9}=-6\)ĐK : x >= 1
\(\Leftrightarrow5\sqrt{x-1}-6\sqrt{x-1}=-6\Leftrightarrow\sqrt{x-1}=6\Leftrightarrow x=37\)
Bài 4 :
a, Xét tam giác ABC vuông tại A, đường cao AH
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=\sqrt{400-144}=16\)cm
* Áp dụng hệ thức : \(AB.AC=BC.AH\Rightarrow AH=\frac{AB.AC}{BC}=\frac{192}{20}=\frac{48}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{144}{20}=\frac{36}{5}\)cm
b, sinBAH = \(\frac{BH}{AB}=\frac{\frac{36}{5}}{12}=\frac{3}{5}\)
cosBAH = \(\frac{AH}{AB}=\frac{\frac{48}{5}}{12}=\frac{4}{5}\)
tanBAH = \(\frac{BH}{AH}=\frac{\frac{36}{5}}{\frac{48}{5}}=\frac{36}{48}=\frac{3}{4}\)
cotaBAH = \(\frac{AH}{BH}=\frac{48}{36}=\frac{4}{3}\)
c, Ta có : \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\Rightarrow\frac{AB+AC}{ABAC}=\frac{\sqrt{2}}{AD}\)
\(\Rightarrow\left(AB+AC\right)AD=\sqrt{2}ABAC\)(*)
Vì AD là đường phân giác \(\frac{AB}{AC}=\frac{BD}{CD}\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}\)
Theo tính chất dãy tỉ số bằng nhau : \(\frac{CD}{AC}=\frac{BD}{AB}=\frac{BC}{AB+AC}=\frac{20}{12+16}=\frac{20}{28}=\frac{5}{7}\)
\(\Rightarrow BD=\frac{5}{7}AB=\frac{5}{7}.12=\frac{60}{7}\)cm
=> \(HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{48}{35}\)xm
Theo Pytago tam giác AHD vuông tại H :
\(AD=\sqrt{HD^2+AH^2}=\frac{48\sqrt{2}}{7}\)cm
Thay vào (*) ta được : \(\frac{\left(12+16\right).48\sqrt{2}}{7}=\sqrt{2}.12.16\)*đúng*
Vậy ta có đpcm