\(A=\dfrac{3}{1.4}+\dfrac{3}{2.5}+...+\dfrac{3}{97,100}\)
GIÚP MÌNH VỚI MAI MÌNH THI RỒI!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)
\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)
\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)
\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)
A=\(\dfrac{3}{1}\).(\(\dfrac{3}{2.5}\)+\(\dfrac{3}{5.8}\)+...+\(\dfrac{3}{98.101}\))
A=3.(\(\dfrac{1}{2}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\)-\(\dfrac{1}{101}\))
A=3.(\(\dfrac{1}{2}\)-\(\dfrac{1}{101}\))
A=3.\(\dfrac{98}{202}\)
A=\(\dfrac{294}{202}\)=\(\dfrac{147}{101}\)
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2022}{50^8}\)
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
B = \(\dfrac{2023}{50^{10}}\) + \(\dfrac{2021}{5^8}\) = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{1}{50^{10}}\) + \(\dfrac{2021}{50^8}\)
Vì: \(\dfrac{1}{50^{10}}\) < \(\dfrac{1}{50^8}\) nên \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^{10}}\) < \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
Vậy A > B
có thể coi a=b=c=d từ đó thì ra 2 nghiệm đều thỏa mãn biểu thức là:
x = {-2;2}
ĐKXĐ: \(x>0\)
Áp dụng BĐT Cauchy cho 2 số dương:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}\right)^2=1\Leftrightarrow x=1\left(tm\right)\)
Ta đặt
\(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)
\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)
\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)
\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)
\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)
\(A=\dfrac{693}{100}\)
= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)
= 7.(1 - 1/100)
= 7 . 99/100
= 693/100
\(\Leftrightarrow x\cdot\dfrac{-1}{2}=-\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{2}{5}:\dfrac{1}{2}=\dfrac{4}{5}\)
bạn đăng bên toán sẽ nhận được câu trả lời nhah hơn nha.