cho abc chia hết cho 27 chứng minh rằng bcd chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta có:abc-bca
=100xa+10xb+c-100xb-10xc-a
=99xa-90xb-9xc
=9x(11xa-10xb-c) chia hết cho 9(1)
Do abc chia hết cho 27=>abc chia hết cho 3=>a+b+c chia hết cho 3
=>14xa+14xb+14xc chia hết cho 3
Ta có:3xa+24xb+15xc cũng chia hết cho 3
=>14xa+14xb+14xc-3xa-24xb-15xc chia hết cho a
=>11xa-10xb-c chia hết cho 3
=>(1) chia hết cho 27
=>abc-bca chia hết cho 27
Mà abc chia hết cho 27
=>bca chia hết cho 27
abc chia hết cho 27 => abc chia hết cho 3 và 9 mà chia hết cho 9 thì chia hết cho 3 => a+b+c chia hết cho 3 và 9
vậy suy ra bca tổng của b+c+a = a+b+c và cũng chia hết cho 3 và 9 => nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
Ta có:abc chia hết cho 27
=>abc chia hết cho 3 và 9
=>(a+b+c) chia hết cho 3 và 9
=>(b+c+a) chia hết cho 3 và 9
=>bca chia hết cho 3 và 9
=>bca chia hết cho 27
bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
Ta có abc chia hết cho 27
=> 10(100a + 10b + c) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Ta có:abc chia hết cho 27
⇒100a + 10b + c chia hết cho 27
⇒10(100a + 10b + c) chia hết cho 27
⇒1000a + 100b + 10c chia hết cho 27
⇒999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
bca = 100b + 10c + a ( 1 )
abc chia hết cho 27 < = > 100b + 10c + a chia hết cho 27 <=> 19a + 10b + c chia hết cho 27
=> c = 27k - 19a - 10b
Thay vào ( 1 ) => bca = 100b + 10 ( 27k - 19a - 10b ) + a = 270K - 189a = 27( 10k - 7a ) chia hết cho 27
abc chia hết cho 27
=> abc chia hết cho 3 và 9
=> a + b + c chia hết cho 3 và 9
=>Tổng của bca = b+c+a = a+b+c và cũng chia hết cho 3 và 9
=> Nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
abc chia hết cho 27
=> abc chia hết cho 3 và 9
=> a + b + c chia hết cho 3 và 9
=>Tổng của bca = b+c+a = a+b+c và cũng chia hết cho 3 và 9
=> Nếu abc chia hết cho 27 thì bca cũng chia hết cho 27