K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE
=>ΔAHD=ΔAED

b: DH=DE
DE<DC

=>DH<DC

c: Xét ΔAKC có

CH,KE là đường cao

CH căt KE tại D

=>D là trực tâm

=>AD vuông góc KC

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE

=>ΔAHD=ΔAED

b: ΔAHD=ΔAED

=>DH=DE

mà DE<DC

nên DH<DC

c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

góc HDK=góc EDC

=>ΔDHK=ΔDEC 

=>DK=DC

=>ΔDKC cân tại D

d: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

mà DK=DC

nên AD là trung trực của KC

mà M là trung điểm của CK

nên A,D,M thẳng hàng

12 tháng 7 2017

A B C H

VẼ HÌNH HƠI XẤU THÔNG CẢM NHA

áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)

áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)

thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)

12 tháng 7 2017

đẹp thế còn gì nữa. 

8 tháng 7 2021

Áp dụng hẹ thức lượng trong tam giác vuông:

\(AB.AC=AH.BC=78\)

\(\Rightarrow AB=\dfrac{78}{AC}\)

Lại có:\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{78}{AC}\right)^2+AC^2=169\)

\(\Leftrightarrow AC^4-169AC^2+6084=0\)\(\Leftrightarrow\left[{}\begin{matrix}AC=\sqrt{117}=3\sqrt{13}\\AC=\sqrt{52}=2\sqrt{13}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}AB=2\sqrt{13}\\AB=3\sqrt{13}\end{matrix}\right.\)

Vậy \(AB=2\sqrt{13};AC=3\sqrt{13}\) hoặc \(AC=2\sqrt{13};AB=3\sqrt{13}\)

8 tháng 7 2021

Xét \(\Delta\)ABC vuông tại A, đường cao AH

\(AB.AC=AH.BC=6.13=78\)

\(\rightarrow AC=\dfrac{78}{AB}\)

Xét \(\Delta ABC\) vuông tại A

\(\rightarrow AB^2+AC^2=BC^2\left(Pytago\right)\)

\(\rightarrow AB^2+\left(\dfrac{78}{AB}\right)^2=13^2\)

\(\rightarrow AB^2+\dfrac{6084}{AB^2}=169\)

\(\rightarrow AB^4+6084=169AB^2\)

\(\rightarrow AB^4-169AB^2+6084=0\)

Đặt \(t=AB^2>0\). Phương trình trở thành:

\(t^2-169t+6084=0\)

\(\Leftrightarrow t^2-117t-52t+6084=0\)

\(\Leftrightarrow t\left(t-117\right)-52\left(t-117\right)=0\)

\(\Leftrightarrow\left(t-52\right)\left(t-117\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-52=0\\t-117=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=52\\t=117\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB^2=52\\AB^2=117\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB=\sqrt{52}=2\sqrt{13}\rightarrow AC=\dfrac{78}{2\sqrt{13}}=3\sqrt{13}\\AB=\sqrt{117}=3\sqrt{13}\rightarrow AC=\dfrac{78}{3\sqrt{13}}=2\sqrt{13}\end{matrix}\right.\)

Vậy hai cạnh góc vuông của tam giác vuông là \(3\sqrt{13}\) và \(2\sqrt{13}\)

undefined

 

 

 

2 tháng 6 2016

Đề thiếu ko bạn

ko thiếu đâu

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)