Tính giá trị biểu thức:
\(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)
\(=\dfrac{298}{719}.0-\dfrac{2011}{2012}\)
\(=0-\dfrac{2011}{2012}\)
\(=-\dfrac{2011}{2012}\)
a) \(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{3}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\left(\dfrac{3}{12}+\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\left(\dfrac{3+1+4}{12}\right)-\dfrac{2011}{2012}=\dfrac{298}{719}:\dfrac{2}{3}-\dfrac{2011}{2012}=\dfrac{298}{719}\cdot\dfrac{3}{2}-\dfrac{2011}{2012}=\dfrac{149.3}{719.1}-\dfrac{2011}{2012}=\dfrac{447}{719}-\dfrac{2011}{2012}=\dfrac{889364}{1446628}-\dfrac{1445909}{1446628}=\dfrac{889364-1445909}{1446628}=-\dfrac{556545}{1446628}.\)b)\(\dfrac{27\cdot18+27+103-120\cdot27}{15\cdot33+33\cdot12}=\dfrac{27\left(18+103-120\right)}{33\left(15+12\right)}=\dfrac{27\cdot1}{33\cdot27}=\dfrac{1\cdot1}{33\cdot1}=\dfrac{1}{33}\)
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))
1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)
\(B< 1\)
2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)
\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)
\(B=\dfrac{1}{20}\)
3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)
\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)
\(A=11\)
4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)
Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)
\(\Rightarrow B>A\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}.\dfrac{12}{7}\)
\(=\dfrac{2}{3}+\dfrac{7.3.2.2}{3.7.3.2.3}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
TICK CHO MÌNH NHÉ
Giải:
\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\) . (\(-\dfrac{4}{9}\) + \(\dfrac{5}{6}\) ) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(^{\dfrac{1}{3}}\) . \(\dfrac{7}{18}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{7}{54}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{9}\)
= \(\dfrac{8}{9}\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\cdot\dfrac{0}{6}\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\cdot0\)
\(Q=0\)
\(\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.4=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{5}{56}\)
\(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
\(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
\(=\dfrac{298}{719}.0-\dfrac{2011}{2012}\)
\(=0-\dfrac{2011}{2012}\)
\(=-\dfrac{2011}{2012}\)