Cho \(x>y\ge0\). CMR \(x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BDT\Leftrightarrow\dfrac{x^4}{x^2y^2}+\dfrac{y^4}{x^2y^2}+\dfrac{4x^2y^2}{x^2y^2}\ge3\left(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\right)\)
\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2+6x^2y^2}{x^2y^2}\ge\dfrac{3\left(x^2+y^2\right)}{xy}\)
\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2}{x^2y^2}\ge\dfrac{3x^2+3y^2}{xy}-\dfrac{6xy}{xy}\)
\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x^2-2xy+y^2\right)}{xy}=\dfrac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\left(x-y\right)^2\left[\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\right)\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge\dfrac{6x}{y}+\dfrac{6y}{x}\)
\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-4.\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0^{\left(1\right)}\)
\(^{\left(1\right)}\)đúng \(\Rightarrowđpcm\)
Áp dụng BĐT : x4 + y4 ≥ 2x2y2
=> \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2 ( x , y > 0 )
TT , \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2 ( x , y > 0 )
Ta có : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) + 4 ≥ 6 ( 1 )
\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 6 ( 2 )
Từ ( 1 ; 2) => đpcm
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1\right)+\left(\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\right)\ge0\)\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\) (đúng)
cách khác
đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\Leftrightarrow t^2-3t+2\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)
điều này luôn đúng với mọi |t| >=2 => dpcm
kết luận điều kiện đề hơi thừa
cái cần c/m đúng với mọi x,y khác 0
BĐT\(\Leftrightarrow\left(\frac{1}{x-1}\right)^3+\left(\frac{x-1}{y}\right)^3+\left(\frac{1}{y}\right)^3\ge3\left(\frac{1}{x-1}+\frac{x-1}{y}+\frac{1}{y}-2\right)\)
Đặt \(\left(\frac{1}{x-1};\frac{x-1}{y};\frac{1}{y}\right)=\left(a;b;c\right)\)
BĐT cần cm \(\Leftrightarrow a^3+b^3+c^3\ge3\left(a+b+c-2\right)\)
\(\Leftrightarrow\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3\left(a+b+c\right)\)
Đúng theo AM-GM --> đpcm
a)\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\)\(\ge0\)
Vậy \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
b) ta có: A=\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)=\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
A\(\ge\)\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)
=\(\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)
x>y\(\ge\)0=>x-y>0 y+1>0
Đặt A=\(x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}=\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}+\left(y+1\right)-1\)
Áp dụng BĐT cô-si cho 2 số dương ta có:
\(\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge2\sqrt{\dfrac{\left(x-y\right)4}{\left(x-y\right)\left(y+1\right)^2}}=\dfrac{4}{y+1}\)
Dấu "=" xảy ra khi và chỉ khi: (x-y)2(y+1)2=4
<=>(x-y)(y+1)=2(do là các số dương)
=>A\(\ge\dfrac{4}{y+1}+\left(y+1\right)-1\)
Áp dụng cô-si tiếp ta được:
\(\dfrac{4}{y+1}+\left(y+1\right)\ge2\sqrt{\dfrac{4}{y+1}\left(y+1\right)}=4\)
Dấu "=" xảy ra khi và chỉ khi (y+1)2=4 <=>y+1=2<=>y=1
=>A\(\ge4-1=3\)
Dấu "=" xảy ra khi (x-y)(y+1)=2 và y=1
<=>x=2 y=1
AM-GM chọn điểm rơi thôi . Có gì hay âu . Nếu hóc búa thì thấy Cô-sy ngược dâu khó nhất