K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Ta có :

\(\dfrac{31}{2}.\dfrac{32}{2}.\dfrac{33}{2}.....\dfrac{60}{2}=31.32.33.....\dfrac{60}{2^{30}}\)

(31.32.33....60)(1.2.3....30)/230(1.2.3....30)

= (1.3.5.....59)(2.4.6.....60 )/( 2.4.6....60 ) = 1.3.5....59

\(\Rightarrow P=Q\)

28 tháng 4 2017

limdimko giống như cách của mk nhưng cx 1like

13 tháng 6 2018

Ta có:\(\dfrac{31}{2}\).\(\dfrac{32}{2}\).\(\dfrac{33}{2}\).....\(\dfrac{60}{2}\)

=\(\dfrac{31.32.33.....60}{2^{30}}\)

=\(\dfrac{\left(1.2.3.....30\right).\left(31.32.33.....60\right)}{\left(1.2.3.....30\right).2^{30}}\)

=\(\dfrac{1.2.3.....60}{2.4.6.....60}\)

=\(\dfrac{\left(1.3.5.....59\right).\left(2.4.6.....60\right)}{2.4.6.....60}\)

=1.3.5.....59

Vậy (đpcm)

25 tháng 3 2017

Giải:

Đặt \(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)

Ta có:

\(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)

\(\Rightarrow A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)

Nhận xét:

\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)

\(\Rightarrow A< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)

\(\Rightarrow A< \dfrac{4}{5}\left(1\right)\)

Lại có:

\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{1}{6}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{36}{60}=\dfrac{3}{5}\)

\(\Rightarrow A>\dfrac{3}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{3}{5}< A< \dfrac{4}{5}\)

Vậy \(\dfrac{3}{5}< \dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{4}{5}\) (Đpcm)

22 tháng 4 2018

Đặt A=131+132+133+...+159+160A=131+132+133+...+159+160

Ta có:

A=131+132+133+...+159+160A=131+132+133+...+159+160

⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13

141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14

151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15

⇒A<13+14+15=4760<4860=45⇒A<13+14+15=4760<4860=45

⇒A<45(1)⇒A<45(1)

Lại có:

131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14

141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15

151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16

⇒A>14+15+16=3760>3660=35⇒A>14+15+16=3760>3660=35

⇒A>35(2)⇒A>35(2)

Từ (1)(1)(2)(2)

⇒35<A<45⇒35<A<45

Vậy 35<131+132+133+...+159+160<4535<131+132+133+...+159+160<45

11 tháng 6 2015

Ta có:

31/2.32/2.33/2....60/2=31.32......60/2^30

=(31.32.33....60)(1.2.3....30)/2^30(1.2.3...30)

=(1.3.5...59)(2.4.6...60)/(2.4.6...60)=1.3.5...59

=>P=Q

nhớ ****

6 tháng 4 2017

cái dòng 3, 4 mk ko hiểu sao 2^30.(1.2.3....30) lại bằng 2.4.6...60

6 tháng 4 2017

Ta có: \(S< \dfrac{1}{2}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{32}\) \(=\dfrac{1}{2}+\dfrac{3}{11}+\dfrac{2}{31}+\dfrac{2}{32}\)

\(=\dfrac{4909}{5456}< \dfrac{9}{10}\)

\(\Rightarrow S< \dfrac{9}{10}\)

Vậy \(S< \dfrac{9}{10}\)

10 tháng 5 2017

bn dựa vào câu trả lời của Quách Thùy Dung trong câu hỏi của The Dack Knight mà làm hihihiuhehe

10 tháng 5 2017

giải chi tiết hơn