Tìm số điểm biểu diễn của số phức z sao cho \(z^4\) - 1 = 0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
14 tháng 11 2018
Đáp án A
Giả sử
Ta có M(a;b) và M'(a;-b)
Khi đó
Suy ra và
Do 4 điểm M, N, M’, N’ tạo thành hình thang cân nhận Ox làm trục đối xứng nên 4 điểm đó lập thành hình chữ nhật
Với a = -b, ta có
Dấu bằng xảy ra khi
Với ta có
Vậy
NV
Nguyễn Việt Lâm
Giáo viên
10 tháng 3 2021
\(M\left(1;1\right)\) ; \(N\left(2;3\right)\)
Gọi \(w=x+yi\Rightarrow Q\left(x;y\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{MN}=\left(1;2\right)\\\overrightarrow{MQ}=\left(x-1;y-1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MN}+3\overrightarrow{MQ}=\left(3x-2;3y-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow w=\dfrac{2}{3}+\dfrac{1}{3}i\)
gọi \(z=a+bi\) với \(\left(a;b\in Z;i^2=-1\right)\)
ta có : \(z^4-1=0\Leftrightarrow\left(a+bi\right)^4-1=0\)
\(\Leftrightarrow a^4+4a^3bi+6a^2b^2i^2+4ab^3i^3+b^4i^4-1=0\)
\(\Leftrightarrow a^4+4a^3bi-6a^2b^2-4ab^3i+b^4-1=0\)
\(\Leftrightarrow\left(a^4-6a^2b^2+b^4-1\right)+\left(4a^3b-4ab^3\right)i=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^4-6a^2b^2+b^4-1=0\\4a^3b-4ab^3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4ab\left(a-b\right)\left(a+b\right)=0\\a^4-6a^2b^2+b^4-1=0b+++b^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\b=0\\a=b\\a=-b\end{matrix}\right.\\a^4-6a^2b^2+b^4-1=0\end{matrix}\right.\)
với \(a=0\Rightarrow b=\pm1\)
với \(b=0\Rightarrow a=\pm1\)
với \(a=b\Rightarrow\)\(vônghiệm\)
với \(a=-b\Rightarrow\) \(vônghiệm\)
\(\Rightarrow z=1;z=-1;z=i;z=-i\)
vậy có 4 điểm biểu diển của số phức \(z\)