giiar hộ mk chi tiết vs ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\)
\(A=\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(a+7b\right)}}+\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(b+7c\right)}}+\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(c+7a\right)}}\)
\(\ge\dfrac{4}{\dfrac{8+8+a+7b}{3}}+\dfrac{4}{\dfrac{8+8+b+7c}{3}}+\dfrac{4}{\dfrac{8+8+c+7a}{3}}\ge\dfrac{\left(2+2+2\right)^2}{\dfrac{8+8+a+7b+8+8+b+7c+8+8+c+7a}{3}}\)
\(=\dfrac{36.3}{8\left(a+b+c\right)+48}=\dfrac{3}{2}\)
Vậy \(A_{min}=\dfrac{3}{2}\Leftrightarrow a=b=c=1\)
a) Thay m=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
Câu 4:
\(\dfrac{3x+5}{16}-\dfrac{3x-5}{26}=\dfrac{3x-8}{29}-\dfrac{3x+8}{13}\)
\(\Leftrightarrow\left(\dfrac{3x+5}{16}+1\right)-\left(\dfrac{3x-5}{26}+1\right)=\left(\dfrac{3x-8}{29}+1\right)-\left(\dfrac{3x-8}{13}+1\right)\)
\(\Leftrightarrow\left(3x+21\right)\left(\dfrac{1}{16}-\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{13}\right)=0\)
=>3x+21=0
hay x=-7
\(N=\left|x+3\right|+\left|x+4\right|+\left|x+5\right|\)
\(\left|x+3\right|,\left|x+4\right|,\left|x+5\right|\ge0\)
\(\Rightarrow N\ge0\)
\(N=\left(x+3\right)+\left(x+4\right)+\left(x+5\right)\ge0\)
\(N=\left(x+x+x\right)+\left(3+4+5\right)\)
\(N=3x+12\)
\(\Rightarrow N=3x\ge12\)
\(\Rightarrow N=x\ge4\)
\(\Rightarrow N\ge4\)
\(\%Fe\left(FeO\right)=\dfrac{56}{72}.100\%=77,78\%\)
\(\%Fe\left(Fe_2O_3\right)=\dfrac{56.2}{160}.100\%=70\%\)
\(\%Fe\left(Fe_3O_4\right)=\dfrac{56.3}{232}.100\%=72,414\%\)
\(\%Fe\left(Fe\left(OH\right)_3\right)=\dfrac{56}{107}.100\%=52,34\%\)
\(\%Fe\left(FeCl_2\right)=\dfrac{56}{127}.100\%=44,09\%\)
\(\%Fe\left(FeSO_4.5H_2O\right)=\dfrac{56}{242}.100\%=23,14\%\)
=> FeO có hàm lượng Fe cao nhất
Bài 1 :
Gọi tử số là x => Mẫu số là x - 8
Nếu thêm tử hai đơn vị thì tử mới là : \(x+2\)
Nếu bớt mẫu 3 đơn vị thì mẫu mới là : \(x-11\)
Mà phân số mới là \(\dfrac{3}{4}.\)
Theo đề bài , ta có phương trình :
\(\dfrac{x+2}{x-11}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+2\right)=3\left(x-11\right)\)
\(\Leftrightarrow4x+8=3x-33\)
\(\Leftrightarrow x=-41\)
Vậy tử là -41
mẫu là -49
Bài 3 : \(\dfrac{x-1}{4}+1\ge\dfrac{x+1}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)}{12}+\dfrac{12}{12}\ge\dfrac{4\left(x+1\right)}{12}\)
\(\Leftrightarrow3x-3+12\ge4x+4\)
\(\Leftrightarrow-x\ge-5\)
\(\Leftrightarrow x\le5\)
Vậy...............