Từ một điểm M bên ngoài đường tròn (O) vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O), ở đây A, B là các tiếp điểm và C nằm giữa M, D.
a) Chứng minh MA2 = MC.MD ;
b) Gọi I là trung điểm của CD. Chứng minh rằng 5 điểm M, A, O, I, B cùng nằm trên một đường tròn ;
c) Gọi H là giao điểm của AB và MO. Chứng minh tứ giác CHOD nội tiếp được đường tròn. Suy ra AB là đường phân giác của góc CHD ;
d) Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh A, B, K thẳng hàng.