Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm
=> ^MAO = ^MBO = 900
Xét tam giác MAOB có ^MAO + ^MBO = 1800
mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn
2, Xét tam giác MAC và tam giác MDA
^M _ chung
^MAC = ^MDA ( cùng chắn cung AC )
Vậy tam giác MAC ~ tam giác MDA (g.g)
\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)
3, Ta có AM = MB ( tc tiếp tuyến cắt nhau )
OB = OA = R
Vậy MO là đường trung trực
Xét tam giác MAO vuông tại A, đường cao AH
AO^2 = OH . OM ( hệ thức lượng )
\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
Xét ΔCAM vuông tại A có AD là đường cao
nên \(AM^2=MB^2=MD\cdot MC\)
b: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
hay MO⊥AB
Xét ΔMAO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2=MC\cdot MD\)
a) Ta có
OA vg góc vs MA (gt) => góc MAO = 90 độ
OB vg góc vs MB (gt) => góc MBO = 90 độ
Tứ giác MAOB có góc MAO + góc MBO = 90 + 90 = 180 độ
=> MAOB nội tiếp
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=OM^2-R^2
b: Xét (O) co
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng vơi ΔMDO
=>góc MHC=góc MDO
=>góc ODC+góc OHC=180 độ
=>OHCD nội tiếp