a+b+1) ^ 3 - ( a+b - 1)^3 - 6(a+b)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ \left(a+1\right)\left(b+2\right)=5\\Vậy:\left(a+1\right);\left(b+2\right)\inƯ\left(5\right)=\left\{1;5\right\}\\ TH1:a+1=1\Rightarrow a=0;b+2=5\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=5\Rightarrow a=4;b+2=1\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ \Rightarrow\left(a;b\right)=\left(4;-1\right)\)
\(2,\\ \left(a+1\right).\left(b+3\right)=6\\ \Rightarrow\left(a+1\right);\left(b+3\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\\ \Rightarrow TH1:a+1=1\Rightarrow a=0;b+3=6\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=2\Rightarrow a=1;b+3=3\Rightarrow b=0\left(Nhận,vì:a>b\right)\\ TH3:a+1=3\Rightarrow a=2;b+3=2\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ TH4:a+1=6\Rightarrow a=5;b+3=1\Rightarrow b=-2\left(Nhận,vì:a>b\right)\\ Vậy:\left(a;b\right)=\left(1;0\right).hoặc\left(a;b\right)=\left(2;-1\right).hoặc\left(a;b\right)=\left(5;-2\right)\)
\(A=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+..........+\frac{1}{8}.\frac{1}{9}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{8.9}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.......+\frac{1}{8}-\frac{1}{9}=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+....+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{10.11}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
\(\text{c,d cơ bản tự làm nha }\)
A=>1.1/2.3+1.1/3.4+1.1/4.5+1.1/5.6+1.11/6.7+.1/7.8+1.1/8.9
=>1/2.3+1/3.4+1/4.5+1/6.7+1/7.8+1/8.9
=>1/2-1/3-1/4-1/5-1/6-1/7-1/8-1/9
=>1/2-1/9=>9/18-2/18=>7/18
Vậy A= 7/18
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
a) = =
b) = = = . ( Với điều kiện b # 1)
c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).
d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =
Với a = \(-\frac{3}{5}\)=> \(A=-\frac{3}{5}.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\)
\(\Rightarrow A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)
Với b = \(\frac{12}{13}\)=> \(B=\frac{12}{13}.\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(\Rightarrow B=\frac{12}{13}.\frac{13}{12}=1\)
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)