Mỗi khẳng định sau đúng hay sai ? Vì sao ?
a) \(\left(-2\right)+3\ge2\)
b) \(-6\le2.\left(-3\right)\)
d) \(x^2+1\ge1\)\(4+\left(-8\right)< 15+\left(-8\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (-6).5 < (-5).5
Vì -6 < -5 và 5 > 0
=> (-6).5 < (-5).5
Vậy khẳng định (-6).5 < (-5).5 là đúng
b) -6 < -5 và -3 < 0
=> (-6).(-3) > (-5).(-3)
Vậy khẳng định (-6).(-3) < (-5).(-3) là sai.
c) -2003 ≤ 2004 và -2005 < 0
=> (-2003).(-2005) ≥ (-2005).2004
Vậy khẳng định (-2003).(-2005) ≤ (-2005).2004 là sai.
d) x2 ≥ 0 và -3 < 0
=> -3x2 ≤ 0
Vậy khẳng định -3x2 ≤ 0 là đúng
a: \(log\left(x-2\right)< 3\)
=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)
b: \(log_2\left(2x-1\right)>3\)
=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)
=>2x>10
=>x>5
c: \(log_3\left(-x-1\right)< =2\)
=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)
d: \(log_2\left(2x-3\right)>=2\)
=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)
=>2x-3>=4
=>2x>=7
=>\(x>=\dfrac{7}{2}\)
e: \(log_3\left(2x-7\right)>2\)
=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)
=>2x-7>9
=>2x>16
=>x>8
a.
\(log\left(x-2\right)< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)
b.
\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)
c.
\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)
d.
\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)
e,
\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
Ta có: 2(x - 8)^3 = 2x^3 - 48x^2 + 384x - 1024
2(8 - x)(8 - x)^2 = 2x^3 - 48x^2 + 384x - 1024
=> \(\frac{\left(x-8\right)^3}{2\left(8-x\right)}=\frac{\left(8-x\right)^2}{2}\) (đúng) =))
Khẳng định đúng :
\(c,\left(\frac{-1}{2}\right)^4=\frac{1}{16}\)
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
Khẳng định trên là đúng. Vì nhân cả tử và mẫu của phân thức \(\frac{{2y}}{{3\left( {x - y} \right)}}\) với 15 ta được phân thức
\(\frac{{30{\rm{x}}{y^2}\left( {x - y} \right)}}{{45{\rm{x}}y{{\left( {x - y} \right)}^2}}} \Rightarrow \frac{{30{\rm{x}}{y^2}\left( {x - y} \right)}}{{45{\rm{x}}y{{\left( {x - y} \right)}^2}}} = \frac{{2y}}{{3\left( {x - y} \right)}}\)
Khẳng định C là khẳng định sai vì:
Nếu: \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)
\(\begin{array}{l} \Rightarrow \frac{{x + 1}}{{x - 1}} - \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}} = 0\\ \Rightarrow \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\\ \Rightarrow \frac{{\left( {{x^3} + 1} \right) - \left( {{x^3} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{2}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\end{array}\)
\( \Rightarrow \) vô lý
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì \(x^2\) ≥ 0 với mọi x ∈ R
=> \(x^2\) + 1 ≥ 0 + 1
=> \(x^2\) + 1 ≥ 1
Vậy khẳng định \(x^2\)+ 1 ≥ 1 là đúng.
(Kí hiệu: VP = vế phải; VT = vế trái)
a) Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 \(\ge\) 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 \(\le\) 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì x2 \(\ge\)0 với mọi x ∈ R
=> x2 + 1 \(\ge\) 0 + 1
=> x2 + 1 \(\ge\) 1
Vậy khẳng định x2 + 1 \(\ge\) 1 là đúng.