K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Ta có: VT = (-2) + 3 = 1

VP = 2

=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.

b) Ta có: VT = -6

VP = 2.(-3) = -6

=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.

c) Ta có: VT = 4 + (-8) = -4

VP = 15 + (-8) = 7

=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.

d)\(x^2\) ≥ 0 với mọi x ∈ R

=> \(x^2\) + 1 ≥ 0 + 1

=> \(x^2\) + 1 ≥ 1

Vậy khẳng định \(x^2\)+ 1 ≥ 1 là đúng.

22 tháng 4 2017

(Kí hiệu: VP = vế phải; VT = vế trái)

a) Ta có: VT = (-2) + 3 = 1

VP = 2

=> VT < VP nên khẳng định (-2) + 3 \(\ge\) 2 là sai.

b) Ta có: VT = -6

VP = 2.(-3) = -6

=> VT = VP nên khẳng định -6 \(\le\) 2.(-3) là đúng.

c) Ta có: VT = 4 + (-8) = -4

VP = 15 + (-8) = 7

=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.

d) Vì x2 \(\ge\)0 với mọi x ∈ R

=> x2 + 1 \(\ge\) 0 + 1

=> x2 + 1 \(\ge\) 1

Vậy khẳng định x2 + 1 \(\ge\) 1 là đúng.

22 tháng 4 2017

a) (-6).5 < (-5).5

Vì -6 < -5 và 5 > 0

=> (-6).5 < (-5).5

Vậy khẳng định (-6).5 < (-5).5 là đúng

b) -6 < -5 và -3 < 0

=> (-6).(-3) > (-5).(-3)

Vậy khẳng định (-6).(-3) < (-5).(-3) là sai.

c) -2003 ≤ 2004 và -2005 < 0

=> (-2003).(-2005) ≥ (-2005).2004

Vậy khẳng định (-2003).(-2005) ≤ (-2005).2004 là sai.

d) x2 ≥ 0 và -3 < 0

=> -3x2 ≤ 0

Vậy khẳng định -3x2 ≤ 0 là đúng


Khẳng định a là khẳng định đúng

26 tháng 8 2021

Xem lại đề.

26 tháng 8 2021

cảm ơn bạn

 

 

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

NV
20 tháng 1

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

4 tháng 4 2020

Ta có: 2(x - 8)^3 = 2x^3 - 48x^2 + 384x - 1024

          2(8 - x)(8 - x)^2 = 2x^3 - 48x^2 + 384x - 1024

=> \(\frac{\left(x-8\right)^3}{2\left(8-x\right)}=\frac{\left(8-x\right)^2}{2}\) (đúng) =))

10 tháng 4 2020

câu a nha k nha

10 tháng 4 2020

Khẳng định đúng : 

\(c,\left(\frac{-1}{2}\right)^4=\frac{1}{16}\) 

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\) 

\(8 - x + 15 = 6 - 4x\)

\( - x + 4x = 6 - 8 - 15\)

\(3x =  - 17\)

\(x = \left( { - 17} \right):3\)

\(x = \dfrac{{ - 17}}{3}\)

Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).

b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)

\( - 9 + 12u =  - 45 + 6u\)

\(12u - 6u =  - 45 + 9\)

\(u = \left( { - 36} \right):6\)

\(6u =  - 36\)

\(u =  - 6\)

Vậy nghiệm của phương trình là \(u =  - 6\).

c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)

\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)

\({x^2} + 6x + 9 - {x^2} - 4x = 13\)

\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)

\(2x = 4\)

\(x = 4:2\)

\(x = 2\)

Vậy nghiệm của phương trình là \(x = 2\).

d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)

\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)

\({y^2} - 25 - {y^2} + 4y - 4 = 5\)

\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)

\(4y = 34\)

\(y = 34:4\)

\(y = \dfrac{{17}}{2}\)

Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Khẳng định trên là đúng. Vì nhân cả tử và mẫu của phân thức \(\frac{{2y}}{{3\left( {x - y} \right)}}\) với 15 ta được phân thức

\(\frac{{30{\rm{x}}{y^2}\left( {x - y} \right)}}{{45{\rm{x}}y{{\left( {x - y} \right)}^2}}} \Rightarrow \frac{{30{\rm{x}}{y^2}\left( {x - y} \right)}}{{45{\rm{x}}y{{\left( {x - y} \right)}^2}}} = \frac{{2y}}{{3\left( {x - y} \right)}}\)

9 tháng 9 2023

Khẳng định trên là đúng vì :

\(\dfrac{30xy^2\left(x-y\right)}{45xy\left(x-y\right)^2}\\ =\dfrac{30xy^2\left(x-y\right):15xy\left(x-y\right)}{45xy\left(x-y\right)^2:15xy\left(x-y\right)}\\ =\dfrac{2y}{3\left(x-y\right)}\left(dpcm\right)\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Khẳng định C là khẳng định sai vì:

Nếu: \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)

\(\begin{array}{l} \Rightarrow \frac{{x + 1}}{{x - 1}} - \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}} = 0\\ \Rightarrow \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\\ \Rightarrow \frac{{\left( {{x^3} + 1} \right) - \left( {{x^3} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{2}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\end{array}\)

\( \Rightarrow \) vô lý