Cho hình 107, trong đó ABCD là hình vuông. Chứng minh rằng tứ giác EFGH là hình vuông ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Do ABCD là hình vuông nên AB = BC = CD = DA.
Theo giả thiết ta có: AE = BF = CG = DH nên ta có:
AB – AE = BC – BF = CD – CG = DA – DH
⇔ BE = CF= DG = HA
* Xét các tam giác vuông AEH, BFE, CGF, DHG có:
AE= BF = CG = DH (giả thiết)
HA= BE = CF = DG (chứng minh trên)
⇒ ΔAEH = ΔBFE = ΔCGF = ΔDHG ( c.g.c)
Suy ra: HE = EF = FG = GH (các cạnh tương ứng)
* Tứ giác EFGH là hình thoi có 1 góc bằng 90o nên EFGH là hình vuông.
a) Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA\); \(\widehat A = \widehat B = \widehat C = \widehat D = 90^\circ \)
Mà \(AE = BF = CG = HD\) (gt) suy ra \(BE = CF = DG = AH\)
Xét \(\Delta AEH\) và \(\Delta DHG\) ta có:
\(\widehat {\rm{A}} = \widehat {\rm{D}} = 90\)
\(AE = GH\) (gt)
\(AH = DG\) (gt)
Suy ra \(\Delta AEH = \Delta DHG\) (c-g-c)
Suy ra \(\widehat {{\rm{AEH}}} = \widehat {{\rm{DHG}}}\) (hai góc tương ứng)
Mà \(\widehat {AEH} + \widehat {AHE} = 90^\circ \)
Suy ra \(\widehat {DHG} + \widehat {AHE} = 90^\circ \)
Suy ra \(\widehat {EHG} = 90^\circ \)
Chứng minh tương tự ta được \(\widehat {HGF} = 90^\circ ;\;\widehat {GFE} = 90^\circ \)
Vậy tứ giác \(EFGH\) là một góc vuông
b) Vì \(\Delta AEH = \Delta DHG\) (cmt)
Suy ra \(HE = HG\) (2)
Từ (1) và (2) suy ra \(EFGH\) là hình vuông
c) chứng minh tương tự câu b ta có: \(HE = EF\); \(HE = FG\)
Khi đó \(EFGH\) có \(HE = HG = EF = FG\) nên là hình thoi (3)
Tứ giác \(EFGH\) có ba góc vuông nên là hình chữ nhật (4)
Từ (3) và (4) suy ra \(EFGH\) là hình vuông
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và EH=BD/2(1)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và FG=BD/2(2)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
THam khảo nha :
Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.
Lời giải:
Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.
Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH. (1)MQ∥BH ; MQ=12BH. (1)
Ta có:
ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^
ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^
Do đó ˆBAH=ˆCAF.BAH^=CAF^.
Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)
⇒ˆFCA=ˆBHA⇒FCA^=BHA^
Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.
Khi đó ˆOCA=ˆIHOOCA^=IHO^
Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))
Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘
Do đó IH⊥IOIH⊥IO hay BH⊥CF. (2)BH⊥CF. (2)
Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH. (3)CF=BH. (3)
Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.
★★★★★★★★★★★★★★★★
Quay lại bài toán. Gọi MM là trung điểm ACAC
Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.
Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)
Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.
b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG
Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)
Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘
Do đó tam giác MPQMPQ vuông cân tại MM
Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.
Suy ra tứ giác MPNQMPNQ là hình vuông.
a) Mình đề nghị bạn giở SGK toán 8 tập 1 trang 93 bài 7 hình học chương I nhé.
b) Ta có: \(AC\perp BD\)
mà HE//BD=>\(HE\perp AC\)
mà AC//HG
=> \(\widehat{EHG}=90^o\)
Chứng minh tương tự với 2 trong 3 góc còn lại của tứ giác EFGH.
=> Nếu AC vuông góc với BD thì EFHG là hình chữ nhật.
Đây là hướng làm nhé, còn bạn hiếu sao thì trình bày theo ý bạn nhé:vv
Bài giải:
Các tam giác vuông AEH, BFC, CGF, DHG có:
AE = BF = CG = DH (gt)
Suy ra AH = BE = CF = DG
Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)
Do đó HE = EF = FG = GH (1)
và ˆEHAEHA^ = ˆFEBFEB^
Ta có ˆHEFHEF^ = 1800 - (ˆHEAHEA^ + ˆFEBFEB^) = 1800 - (ˆHEAHEA^ + ˆEHAEHA^)
= 1800 - 900 = 900 (2)
Từ (1) và (2) ta được EFGH là hình vuông
Các tam giác vuông AEH, BFC, CGF, DHG có:
AE = BF = CG = DH (gt)
Suy ra AH = BE = CF = DG
Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)
Do đó HE = EF = FG = GH (1)
và ˆEHAEHA^ = ˆFEBFEB^
Ta có ˆHEFHEF^ = 1800 - (ˆHEAHEA^ + ˆFEBFEB^) = 1800 - (ˆHEAHEA^ + ˆEHAEHA^)
= 1800 - 900 = 900 (2)
Từ (1) và (2) ta được EFGH là hình vuông.