K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(A=x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\)

\(\Rightarrow\left[\left(1^2\right)^2+\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\right]\ge\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow3\left[\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\right]\ge\left(x^2+y^2+z^2\right)^2\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\):

\(\Rightarrow3A\ge\left(x^2+y^2+z^2\right)^2\ge\left(xy+yz+xz\right)^2=1\)

\(\Rightarrow3A\ge1\Rightarrow A\ge\dfrac{1}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

27 tháng 7 2016

Ta có đẳng thức:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

hoặc bạn áp dụng hệ thức holder á

27 tháng 7 2016

Ta có:

\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

Mặt khác:

\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)

hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)

Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh

NV
25 tháng 12 2020

\(P=\dfrac{1}{xyz\left(x+y+z\right)}-\dfrac{2}{xy+yz+zx}\ge\dfrac{3}{\left(xy+yz+zx\right)^2}-\dfrac{2}{xy+yz+zx}\)

\(P\ge3\left(\dfrac{1}{xy+yz+zx}-\dfrac{1}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\)

\(P_{min}=-\dfrac{1}{3}\) khi \(x=y=z=1\)