K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2020

\(P=\dfrac{1}{xyz\left(x+y+z\right)}-\dfrac{2}{xy+yz+zx}\ge\dfrac{3}{\left(xy+yz+zx\right)^2}-\dfrac{2}{xy+yz+zx}\)

\(P\ge3\left(\dfrac{1}{xy+yz+zx}-\dfrac{1}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\)

\(P_{min}=-\dfrac{1}{3}\) khi \(x=y=z=1\)

 

26 tháng 8 2017

Đặt cái ban đầu là P

Ta có: \(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta lại có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

25 tháng 8 2017

batngothật vĩ đại Hung nguyen

29 tháng 12 2017

Dự đoán điểm rơi: x=3 ; y =4;z =2

ÁP dụng AM-Gm ta có:

\(\dfrac{8}{xyz}+\dfrac{x}{9}+\dfrac{y}{12}+\dfrac{z}{6}\ge4\sqrt[4]{\dfrac{8}{9.12.6}}=\dfrac{4}{3}\)

\(\dfrac{2}{xy}+\dfrac{x}{18}+\dfrac{y}{24}\ge3\sqrt[3]{\dfrac{2}{18.24}}=\dfrac{1}{2}\)

\(\dfrac{2}{yz}+\dfrac{y}{16}+\dfrac{z}{8}\ge3\sqrt[3]{\dfrac{2}{16.8}}=\dfrac{3}{4}\)

\(\dfrac{2}{xz}+\dfrac{z}{6}+\dfrac{x}{9}\ge3\sqrt[3]{\dfrac{2}{6.9}}=1\)

\(\dfrac{13}{18}x+\dfrac{13}{24}y\ge2\sqrt{\dfrac{169}{18.24}xy}\ge\dfrac{13}{3}\)

\(\dfrac{13}{24}z+\dfrac{13}{48}y\ge2\sqrt{\dfrac{169}{24.48}.yz}\ge\dfrac{13}{6}\)

Cộng tất cả theo vế ,ta thu được Đpcm.

4 tháng 12 2017

Ta xét BĐT phụ: \(1+x^3+y^3\ge xy\left(x+y+z\right)\)

\(x^3+y^3\ge xy\left(x+y\right)+xyz-1\)

\(x^3+y^3-xy\left(x+y\right)\ge0\)

\(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)

\(\left(x+y\right)\left(x-y\right)^2\ge0\)( Luôn đúng, vậy BĐT phụ đúng)

\(\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}=\sqrt{x+y+z}.\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3\sqrt[3]{xyz}}.\left(3\sqrt[3]{\dfrac{1}{\sqrt{x^2y^2z^2}}}\right)=3\sqrt{3}\)

GTNN của P là \(3\sqrt{3}\Leftrightarrow x=y=z=1\)

10 tháng 2 2023

không biết :))))

21 tháng 5 2018

đặt x/y=a hay xy/z=a hay j đó là ra nói chung là 4 biế
n lười nháp