Cho biểu thức: A = 1 + 3^2 + 3^4 + ...3^48 + 3^50 chứng tỏ rằng 8.A chia hết cho cả 2 và 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+3^2)+(3^4+3^6)+...+(3^48+3^50)
A=1(1+3^2)+3^4(1+3^2)+...+3^48(1+3^2)
A=1.10+3^4.10+...+3^48.10
A=10(1+3^4+...+3^48)
A=2.5(1+3^4+...+3^48)
=>A chia hết cho 2 và 5 nên 8.A cũng chia hết cho 2 và 5
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273
1.Chứng tỏ rằng:
a) 1+5+52+53+.......+5101:6
b)2+22+23+......+2106 vừa chia hết cho 31,vừa chia hết cho 5
2.Chứng tỏ rằng:
a)Nếu abc-deg chia hết cho 11 thì abc deg chia hết cho 11
b)Nếu abc chia hết cho 8 thì 4a +2b+c chia hết cho 8
ta có:1+3x2+..........+3x50 [50=5x10 mà số nào nhân với 10 cũng có kq số cuối là 0]
Ta có dấu hiệu chia hết cho2 và 5 là số cuối bằng 0 [đã lập luận ở trên]⇒A cũng như 8.A chắc chắn sẽ chia hết cho 2, 5