K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

\(E=1-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{10}}\)

\(E=1-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\)

Đặt \(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\)

\(2S=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\)

\(2S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)

\(2S-S=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

\(S=\dfrac{1}{2}-\dfrac{1}{2^{10}}\). Khi đó \(E=1-\left(\dfrac{1}{2}-\dfrac{1}{2^{10}}\right)=1-\dfrac{1}{2}+\dfrac{1}{2^{10}}=\dfrac{513}{1024}\)

18 tháng 6 2017

\(D=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)

\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}.\dfrac{6}{28}=\dfrac{5}{14}\)

\(E=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{24.25}=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right)=\dfrac{2.23}{50}=\dfrac{23}{25}.\)

\(\dfrac{D}{E}=\dfrac{5}{24}.\dfrac{25}{23}=\dfrac{125}{552}.\)

19 tháng 6 2017

sai ròi kìa

a: x+2/5=1/2

=>x=1/2-2/5=5/10-4/10=1/10

b; x-2/5=2/7

=>x=2/7+2/5=10/35+14/35=24/35

c: 3/5-x=1/10

=>x=3/5-1/10=6/10-1/10=5/10=1/2

d: x*3/4=9/20

=>x=9/20:3/4=9/20*4/3=36/60=3/5

e: x:1/7=14

=>x=14*1/7=2

f: =>x+1/4=2/5:1/2=4/5

=>x=4/5-1/4=16/20-5/20=11/20

g: =>x*2/3=9/12+2/3=3/4+2/3=9/12+8/12=17/12

=>x=17/12:2/3=17/12*3/2=51/24=17/8

a: =>x-3=9

=>x=12

b: =>10-x=-26

=>x=36

c: =>x:4-1=2

=>x:4=3

=>x=12

d: =>x^2=4

=>x=2 hoặc x=-2

e: =>(x-2)^2=100

=>x-2=10 hoặc x-2=-10

=>x=12 hoặc x=-8

3 tháng 2 2022

\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\left(\dfrac{37}{3}-\dfrac{100}{7}\right)}\)

\(=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(\dfrac{-44}{21}\right)}\)

\(=\dfrac{53,25+\dfrac{187}{4}}{\dfrac{-25}{11}}\)

\(=\dfrac{100}{\dfrac{-25}{11}}\)

\(=-44\)

12 tháng 3 2022

a)4/5+x=2/3

x=2/3-4/5

x=-2/15

b)-5/6-x=2/3

x=-5/6-2/3

x=-3/2

c)1/2x+3/4=-3/10

1/2x=-3/10-3/4

1/2x=-21/20

x=-21/20:1/2

x=-21/10

d)x/3-1/2=1/5

x/3=1/5+1/2

x/3=7/10

10x/30=21/30

10x=21

x=21:10

x=21/10

19 tháng 5 2022

tách đi bạn

19 tháng 5 2022

a) (2x - 3)(6 - 2x) = 0

=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)

b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)

c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)

d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)

e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)

 

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

a) \(\dfrac{-12}{15}+\dfrac{-4}{26}=\dfrac{-4}{5}+\dfrac{-2}{13}=\dfrac{-52-10}{65}=\dfrac{-62}{65}\)

b) \(5\dfrac{1}{3}-2\dfrac{4}{5}=\dfrac{16}{3}-\dfrac{14}{5}=\dfrac{80}{15}-\dfrac{42}{15}=\dfrac{38}{15}\)

c) \(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)+\dfrac{-5}{10}=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{2}=\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{35}{70}=\dfrac{41}{70}\)

d) \(-1\dfrac{2}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-9}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-54}{42}+\dfrac{9}{42}-\dfrac{10}{42}=\dfrac{-55}{42}\)

e) \(12-\dfrac{11}{121}+\left(\dfrac{-8}{9}\right)-\left(-\dfrac{3}{7}\right)\)

\(=12-\dfrac{11}{121}-\dfrac{8}{9}+\dfrac{3}{7}\)

\(=\dfrac{91476}{7623}-\dfrac{693}{7623}-\dfrac{6776}{7623}+\dfrac{3267}{7623}\)

\(=\dfrac{7934}{693}\)