\(E=1-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-........-\dfrac{1}{2^{10}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}.\dfrac{6}{28}=\dfrac{5}{14}\)
\(E=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{24.25}=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right)=\dfrac{2.23}{50}=\dfrac{23}{25}.\)
\(\dfrac{D}{E}=\dfrac{5}{24}.\dfrac{25}{23}=\dfrac{125}{552}.\)
a: x+2/5=1/2
=>x=1/2-2/5=5/10-4/10=1/10
b; x-2/5=2/7
=>x=2/7+2/5=10/35+14/35=24/35
c: 3/5-x=1/10
=>x=3/5-1/10=6/10-1/10=5/10=1/2
d: x*3/4=9/20
=>x=9/20:3/4=9/20*4/3=36/60=3/5
e: x:1/7=14
=>x=14*1/7=2
f: =>x+1/4=2/5:1/2=4/5
=>x=4/5-1/4=16/20-5/20=11/20
g: =>x*2/3=9/12+2/3=3/4+2/3=9/12+8/12=17/12
=>x=17/12:2/3=17/12*3/2=51/24=17/8
a: =>x-3=9
=>x=12
b: =>10-x=-26
=>x=36
c: =>x:4-1=2
=>x:4=3
=>x=12
d: =>x^2=4
=>x=2 hoặc x=-2
e: =>(x-2)^2=100
=>x-2=10 hoặc x-2=-10
=>x=12 hoặc x=-8
\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\left(\dfrac{37}{3}-\dfrac{100}{7}\right)}\)
\(=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(\dfrac{-44}{21}\right)}\)
\(=\dfrac{53,25+\dfrac{187}{4}}{\dfrac{-25}{11}}\)
\(=\dfrac{100}{\dfrac{-25}{11}}\)
\(=-44\)
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
a) \(\dfrac{-12}{15}+\dfrac{-4}{26}=\dfrac{-4}{5}+\dfrac{-2}{13}=\dfrac{-52-10}{65}=\dfrac{-62}{65}\)
b) \(5\dfrac{1}{3}-2\dfrac{4}{5}=\dfrac{16}{3}-\dfrac{14}{5}=\dfrac{80}{15}-\dfrac{42}{15}=\dfrac{38}{15}\)
c) \(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)+\dfrac{-5}{10}=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{2}=\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{35}{70}=\dfrac{41}{70}\)
d) \(-1\dfrac{2}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-9}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-54}{42}+\dfrac{9}{42}-\dfrac{10}{42}=\dfrac{-55}{42}\)
e) \(12-\dfrac{11}{121}+\left(\dfrac{-8}{9}\right)-\left(-\dfrac{3}{7}\right)\)
\(=12-\dfrac{11}{121}-\dfrac{8}{9}+\dfrac{3}{7}\)
\(=\dfrac{91476}{7623}-\dfrac{693}{7623}-\dfrac{6776}{7623}+\dfrac{3267}{7623}\)
\(=\dfrac{7934}{693}\)
\(E=1-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{10}}\)
\(E=1-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\)
Đặt \(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\)
\(2S=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\)
\(2S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
\(2S-S=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
\(S=\dfrac{1}{2}-\dfrac{1}{2^{10}}\). Khi đó \(E=1-\left(\dfrac{1}{2}-\dfrac{1}{2^{10}}\right)=1-\dfrac{1}{2}+\dfrac{1}{2^{10}}=\dfrac{513}{1024}\)