K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

=1-\(\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3}\right)-...-\left(\dfrac{1}{99}+\dfrac{1}{99}\right)-\dfrac{1}{100}\)

=\(1-\dfrac{1}{100}=\dfrac{100}{100}-\dfrac{1}{100}=\dfrac{99}{100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

$x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}+\frac{1}{100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}+\frac{1}{100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}$

$=1$

`# \text {DNamNgV}`

\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{98\cdot99}=\dfrac{1}{100}+\dfrac{1}{99\cdot100}\)

\(\Rightarrow x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}\right)=\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow x-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\dfrac{98}{99}=\dfrac{1}{99}\)

\(\Rightarrow x=\dfrac{1}{99}+\dfrac{98}{99}\)

\(\Rightarrow x=\dfrac{99}{99}\)

\(\Rightarrow x=1\)

Vậy, `x = 1.`

18 tháng 3 2021

Đặt A=1.98+2.97+3.96+...+96.3+97.2+98.1

       B=1.2+2,3+3.4+...+96.97+97.98+98.99

Ta có: A=1+(1+2)+...+(1+2+3+...+97+98)

              =\(\dfrac{1.2}{2}+\dfrac{2.3}{2}+...+\dfrac{98.99}{3}\)

              =\(\dfrac{1.2+2.3+3.4+4.5+...+98.99}{2}\)=\(\dfrac{B}{2}\)

    =>E=\(\dfrac{B}{2}\):2=\(\dfrac{1}{2}\)

10 tháng 3 2023

a)

`1/1-1/2`

`=2/2-1/2`

`=1/2`

b)

`1/(1*2)+1/(2*3)`

`=1/1-1/2+1/2-1/3`

`=1/1-1/3`

`=3/3-1/3`

`=2/3`

c)

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

d) 

\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?

\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)

 

13 tháng 11 2017

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

13 tháng 11 2017

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

3 tháng 4 2017

Ta có:

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{99.100-1}{100!}\)

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+...+\dfrac{99.100}{100!}-\dfrac{1}{100!}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+...+\dfrac{99.100}{100!}\right)-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=1+1-\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

Vậy \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{99.100-1}{100!}< 2\) (Đpcm)

22 tháng 4 2017

giúp mình nhé yeuyeu

23 tháng 4 2017

Đặt :

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+................+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{99.100}< 1\rightarrowđpcm\)

13 tháng 2 2023

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)

13 tháng 2 2023

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9.\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\).