Tìm n biết:
\(\dfrac{7n-4}{3n}-20\)
\(A=\dfrac{6n-9}{4}\)
\(\dfrac{n^2-4}{n^{ }2-3n+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(3n+5-\dfrac{3}{n}\right)}{-n\left(1-\dfrac{5}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n+5-\dfrac{3}{n}}{-\left(1-\dfrac{5}{n}\right)}\)
\(=\left[{}\begin{matrix}-\infty\left(n\rightarrow+\infty\right)\\+\infty\left(n\rightarrow-\infty\right)\end{matrix}\right.\)
Bài 2,3 tương tự, bạn tự làm nhé!
1: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7}{1}=7>0\end{matrix}\right.\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-3+\dfrac{2}{n^2}\right)}{n\left(1-\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(-3+\dfrac{2}{n^2}\right)}{1-\dfrac{2}{n}}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{-3+\dfrac{2}{n^2}}{1-\dfrac{2}{n}}=-\dfrac{3}{1}=-3< 0\end{matrix}\right.\)
Đặt :
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)
@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:
\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)
\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)
\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)
\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)
\(=n\times\dfrac{2}{3}=\)+∞
1: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n\left(-1+\dfrac{5}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\left[n\left(\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}\right)\right]\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}=\dfrac{3+0-0}{-1+0}=\dfrac{3}{-1}=-3< 0\end{matrix}\right.\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\left[n\cdot\dfrac{\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7-0}{1-0}=7>0\end{matrix}\right.\)
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{3n+2}{6n+4}-\dfrac{2}{6n+4}\right)\)
\(=\dfrac{1}{3}.\dfrac{3n}{6n+4}\)
\(=\dfrac{n}{6n+4}\) ( đpcm )
Vậy...