K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

a^3 + b^3 + c^3

= a . a^2 + b. b^2 + c . c^2 

= .. pó tay . com 

tui chưa học 

22 tháng 9 2023

\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có: Với 3 số a,b,c ít nhất có 1 cặp a,b,c cùng chẵn hoặc cùng lẻ

=> \(\left[{}\begin{matrix}a+b⋮2\\b+c⋮2\\c+a⋮2\end{matrix}\right.\)=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮6\)

=> \(a^3+b^3+c^3⋮6\)

22 tháng 9 2023

Cảm ơn ak

5 tháng 8 2018

1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)

\(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)

\(\Rightarrow n^3+11n⋮6\)

2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)

\(\Rightarrow n^3-19n⋮6\)

15 tháng 9 2019

1)Ta có: n^3 + 11n

= n^3 +n^2 -n^2 -n+12n

= n^2(n+1) -n(n+1) +12n

= (n+1)(n^2-n) +12n

= (n+1)n(n-1) +12n

Vì (n+1)n(n-1) là 3 số tự nhiên liên tiếp nên

(n+1)n(n-1) chia hết cho 6

12n chia hết cho 6 với mọi n

=> n^3 + 11n chia hết cho 6 với mọi n

23 tháng 5 2022

ko bt

 

3 tháng 11 2017

\(a^3+b^3+c^3\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(a+b+c\right)\)

Ta có\(a^3-a=\left(a-1\right)a\left(a+1\right)\)chia hết cho 6 bạn tự CM

Tương tự \(b^3-b\)\(c^3-c\)

Mà \(a+b+c⋮6\)

Twg các điều trên suy ra \(a^3+b^3+c^3⋮6\)

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

13 tháng 7 2018

Thiếu điều kiện a,b,c thuộc Z

Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên (a-1)a(a+1) chia hết cho 6

CM tương tự ta cũng có: \(b^3-b⋮6;c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

-Nếu \(a^3+b^3+c^3⋮6\Rightarrow a+b+c⋮6\)

-Nếu \(a+b+c⋮6\Rightarrow a^3+b^3+c^3⋮6\)

=>đpcm