Cho khối bát diện đều ABCDEF (h.1.9). Gọi O là giao điểm của AC, BD, M và N theo thứ tự là trung điểm của AB và AE. Tính diện tích thiết diện tạo bởi khối bát đó với mặt phẳng (OMN) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN.
Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự, (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng a/2.
Do đó diện tích của nó bằng
Phương pháp:
Khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện đều ABCDEF (như hình vẽ) là hình hộp chữ nhật.
Cách giải:
Khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện đều ABCDEF là hình hộp chữ nhật có đáy là hình vuông cạnh a 2 ;
Đáp án C.
+ (ABD) và (IMK) có điểm chung là k và lần lượt chứa hai đường thẳng AB // MI
=>Giao tuyến của (ABD) và (IMK) là đường thẳng đi qua K và song song với AB và AD tại E =>Thiết diện cần tìm là tứ giác MKEI có M I / / K E M I > K E (1)
+ Δ B M K = Δ A I E ⇒ I E = M K (2)
Từ (1) và (2) =>Tứ giác MKEI là hình thang cân với đáy lớn là MI
+ Có E K = 1 3 ; A B = a 3 ; M I = a 2
Gọi H là hình chiếu vuông góc của E lên MI =>2IH + EK = IM => I H = a 12
I E = A I 2 + A E 2 − 2 A I . A E . c o s 60 ° = a 13 6 ⇒ E H = 13 a 2 36 − a 2 144 = a 51 12
S I M K E = 1 2 E K + I M . E H = 5 a 2 51 144
Đáp án C.
+ (ABD) và (IMK) có điểm chung là k và lần lượt chứa hai đường thẳng AB // MI
=> Giao tuyến của (ABD) và (IMK) là đường thẳng đi qua K và song song với AB và AD tại E Thiết diện cần tìm là tứ giác MKEI có
Từ (1) và (2) => Tứ giác MKEI là hình thang cân với đáy lớn là MI
+ Có
Gọi H là hình chiếu vuông góc của E lên MI 2IH + EK = IM
Đáp án B.
Trong A B C kẻ M P / / C I P ∈ A C . Trong S A C kẻ P N / / S C N ∈ S A .
⇒ M N P / / S I C ⇒ M N P ≡ α
Suy ra thiết diện giữa α và tứ diện S.ABC là tam giác MNP.
Do S.ABC là tứ diện đều nên ta đặt S A = S B = S C = S D = A B = B C = C A = 2 x
⇒ A I = x ; C I = 2 x 3 2 = x 3
Ta có M P / / C I ⇒ M P C I = A P A C = A M A I = a x ⇒ M P = a x . x 3 = a 3
Tương tự ta có M N = a 3 .
Ta có N P S C = A P A C = a x ⇒ N P = a x . S C = a x .2 x = 2 a .
Chu vi tam giác MNP là C = 2 a + a 3 + a 3 = 2 a 1 + 3 . Ta chọn B.
Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN
Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng \(\dfrac{a}{2}\)
Do đó diện tích của nó bằng \(\dfrac{3\sqrt{3}}{8}a^2\)