K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

31 tháng 3 2021

\(tan^2x-sin^2x=tan^2x.sin^2x\)

\(\Leftrightarrow\dfrac{sin^2x}{cos^2x}-sin^2x=\dfrac{sin^2x}{cos^2x}.sin^2x\)

\(\Leftrightarrow\dfrac{sin^2x\left(1-cos^2x\right)}{cos^2x}=\dfrac{sin^4x}{cos^2x}\)

\(\Leftrightarrow\dfrac{sin^2x.sin^2x}{cos^2x}=\dfrac{sin^4x}{cos^2x}\)

\(\Rightarrowđpcm\)

23 tháng 3 2022

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\) 

\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)

18 tháng 7 2022

a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}

b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}

c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)
=\tan ^{3} x+\tan ^{2} x+\tan x+1

17 tháng 5 2021

a) Ta có: \(1-\frac{\sin^2x}{1+\cot x}-\frac{\cos^2x}{1+\tan x}=1-\frac{\sin^2x}{1+\frac{\cos x}{\sin x}}-\frac{\cos^2x}{1+\frac{\sin x}{\cos x}}\)  (Đk: sinx và cosx khác 0)

\(=1-\frac{\sin^3x}{\sin x+\cos x}-\frac{\cos^3x}{\cos x+\sin x}\)

\(=1-\frac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x.\cos x+\cos^2x\right)}{\sin x+\cos x}\)

\(=1-\left(\sin^2x+\cos^2x-\sin x.\cos x\right)\) (do sinx + cosx luôn khác 0)

\(=\sin x.\cos x\) ( do \(\sin^2x+\cos^2x=1\))

b) Ta có: \(\frac{\sin^2x+2\cos x-1}{2+\cos x-\cos^2x}=\frac{\left(\sin^2x-1\right)+2\cos x}{-\left(\cos x+1\right)\left(\cos x-2\right)}\) (Đk: cosx khác -1 và 2)

\(=\frac{-\cos x\left(\cos x-2\right)}{-\left(\cos x+1\right)\left(\cos x-2\right)}\)

\(=\frac{\cos x}{1+\cos x}\)

19 tháng 5 2021

a) Ta có: 1−sin2x1+cotx −cos2x1+tanx =1−sin2x1+cosxsinx  −cos2x1+sinxcosx    (Đk: sinx và cosx khác 0)

=1−sin3xsinx+cosx −cos3xcosx+sinx 

=1−(sinx+cosx)(sin2x−sinx.cosx+cos2x)sinx+cosx 

=1−(sin2x+cos2x−sinx.cosx) (do sinx + cosx luôn khác 0)

=sinx.cosx ( do sin2x+cos2x=1)

b) Ta có: sin2x+2cosx−12+cosx−cos2x =(sin2x−1)+2cosx−(cosx+1)(cosx−2)  (Đk: cosx khác -1 và 2)

=−cosx(cosx−2)−(cosx+1)(cosx−2) 

=cosx1+cosx 

NV
7 tháng 5 2020

\(\frac{sinx+cosx-1}{1-cosx}=\frac{\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)}{\left(1-cosx\right)\left(sinx-cosx+1\right)}\)

\(=\frac{sin^2x-\left(cosx-1\right)^2}{\left(1-cosx\right)\left(sinx-cosx+1\right)}=\frac{sin^2x-cos^2x+2cosx-1}{\left(1-cosx\right)\left(sinx-cosx+1\right)}\)

\(=\frac{1-cos^2x-cos^2x+2cosx-1}{\left(1-cosx\right)\left(sinx-cosx+1\right)}=\frac{2cosx-2cos^2x}{\left(1-cosx\right)\left(sinx-cosx+1\right)}\)

\(=\frac{2cosx\left(1-cosx\right)}{\left(1-cosx\right)\left(sinx-cosx+1\right)}=\frac{2cosx}{sinx-cosx+1}\)

9 tháng 4 2017

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

9 tháng 4 2017

Tạm thời chưa  hiểu gì cả

hãy đợi đó

19 tháng 12 2019

iểm tra với n = 1

Giả sử đã có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Viết S k + 1   =   S k   +   sin ( k + 1 ) x sử dụng giả thiết quy nạp và biến đổi ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 8 2017

\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x.\left(\frac{1}{cos^2x}-1\right)=sin^2x.\frac{sin^2x}{cos^2x}=tan^2x.sin^2x\)

1 tháng 4 2017

a/ \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)

\(\Leftrightarrow-2\cos^2x+2\cos x-2\cos x+2\cos^2x=0\)

\(\Leftrightarrow0=0\) (đúng)

\(\RightarrowĐPCM\)

1 tháng 4 2017

b/ \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)

\(\Leftrightarrow\tan a.\tan b.\left(\cot a+\cot b\right)=\tan a+\tan b\)

\(\Leftrightarrow\tan a.\tan b.\cot a+\tan a.\tan b.\cot b=\tan a+\tan b\)

\(\Leftrightarrow\tan b+\tan a=\tan a+\tan b\) (đúng)

\(\RightarrowĐPCM\)

a: \(2\cdot cot\left(\dfrac{pi}{2}-x\right)+tan\left(pi-x\right)\)

\(=2\cdot tanx-tanx\)

=tan x

b: \(sin\left(\dfrac{5}{2}pi-x\right)+cos\left(13pi+x\right)-sin\left(x-5pi\right)\)

\(=sin\left(\dfrac{pi}{2}-x\right)+cos\left(pi+x\right)+sin\left(pi-x\right)\)

\(=cosx-cosx+sinx=sinx\)