K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta có = (1)

( vì là góc có đỉnh S ở trong đường tròn (O))

= = (2)

( là góc tạo bởi tiếp tuyến và dây cung).

Theo giả thiết = (3)

Từ (1), (2), (3) ta có: = từ đó ∆ESM là tam giác cân và ES = EM

11 tháng 4 2021

Bạn ơi nếu đề cũng như vậy nhưng họ bắt mình chứng minh tứ giác OMDS nội tiếp thì phải làm sao ạ ? 

 

11 tháng 4 2017

Ta có \(\widehat{MSE}\) = (1)

( vì \(\widehat{MSE}\) là góc có đỉnh S ở trong đường tròn (O))

\(\widehat{CME}\) = = (2)

(\(\widehat{CME}\) là góc tạo bởi tiếp tuyến và dây cung).

Theo giả thiết = (3)

Từ (1), (2), (3) ta có: \(\widehat{MSE}\)= \(\widehat{CME}\)từ đó \(\Delta\)ESM là tam giác cân và ES = EM

3 tháng 12 2018

+  M S E ^ là góc có đỉnh S ở trong đường tròn (O)

+  E S M ^ là góc tạo bởi tiếp tuyến ME và đây MC

⇒ E M S ^ = 1 2 . s đ M C ⏜ = 1 2 . s đ   M B ⏜ +   s đ   B C ⏜

5 tháng 12 2019

Giải bài 39 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Số đo của góc có đỉnh bên trong đường tròn bằng một nửa tổng số đo của hai cung bị chắn.

+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng một nửa số đo của cung bị chắn.

3 tháng 2 2016

bạn vẽ hình ra __________nhìn hình nha!
Vì AB và CD là 2 đường kính vuông góc với nha(gt)
nên chia đường tròn thành 4 cung = nhau
cung AC= cung CB
Có góc BSM=1/2(sđ c.AC + sđ c.BM) (vì góc có đỉnh ở bên trong đường tròn)
<=>g.BSM = 1/2 (sđc.CB +sđc.BM) (vì c.AC=c.BD)
<=>g.BSM =1/2 sđc.CM (1)
Lại có g.CME = 1/2 sđ c.CM (góc tạo bởi 1 tia tiếp tuyến và 1 dây cung) (2)
Từ (1) và (2) => g.BSM =g.CME 
=> tam giác EMS cân tại E
=> SE=EM

 

b: Tham khảo:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b: Tham khảo:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9