cm 32n+2-9.4n+4.9n-22n+2 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phản ví dụ: Cho n = 0 ta có: 222.0 + 5 = 1 + 5 = 6 \(⋮̸\) 7
Nếu đề là A = 222n + 5 thì thay n = 0 ta được:
A = 222.0 + 5 = 5 \(⋮̸\) 7
Vậy đề sai :v
Đoán là cậu thiếu dấu gạch ngang trên đầu
Bài 1: Ta có: \(\overline{abcdeg}\)\(=10000.\overline{ab}+100.\overline{cd}+\overline{eg}\)
\(=\left(769.13+3\right).\overline{ab}+\left(7.13+9\right).\overline{cd}+\overline{eg}\)
\(=769.13.\overline{ab}+3.\overline{ab}\) + \(7.13.\overline{cd}+9.\overline{cd}\)+\(\overline{eg}\)
\(=\left(769.13.\overline{ab}+7.13.\overline{cd}\right)+(3.\overline{ab}+9.\overline{cd}+\overline{eg})\)
\(=13\left(769.\overline{ab}+7.\overline{cd}\right)+\left(3.\overline{ab}+9.\overline{cd}+\overline{eg}\right)\)
Do \(\left\{{}\begin{matrix}13\left(769.\overline{ab}+7.\overline{cd}\right)⋮13\\3.\overline{ab}+9.\overline{cd}+\overline{eg}⋮13\end{matrix}\right.\)
\(\Rightarrow........⋮13\) ( Phần ..... bạn ghi hai biểu thức ngay trên cộng lại với nhau)
\(\Leftrightarrow\overline{abcdeg}⋮13\)
Bài 2: tương tự
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
-Ta có: \(2^{4n}=16^n=\overline{...6}\)
\(\Rightarrow2^{4n}.4=\overline{...6}.4\)
\(\Rightarrow2^{4n+2}=\overline{...4}\)
\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)
\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)
\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)
-Như vậy, thì \(A⋮5\) hay \(B⋮5\).
-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.
-Chứng minh hai số đó không thể cùng chia hết cho 5:
-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.
-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5.
\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)
-Ta có: \(2^{2n}=4^n\).
+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.
+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)
\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).
\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.
\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.
\(\Rightarrow B\) không chia hết cho 5.
-Vậy.................
32n+2 - 9.4n + 4.9n - 22n+2
= 32n.32 - 9.4n + 4.9n - 22n.22
= 9n.9 + 4.9n - 9.4n - 4n.4
= 9n ( 9 + 4 ) - 4n ( 9 + 4 )
= 13 ( 9n - 4n ) \(⋮\)13 ( đpcm )
32n+2 - 9.4n + 4.9n - 22n+2
= 32n . 32 - 9.4n + 4.9n - 22n . 22
= 9n . 9 + 4 . 9n - 9 . 4n - 4n . 4
= 9n ( 9+4) - 4n ( 9+4)
= 13 ( 9n - 4n ) chia hết 13 ( đpcm)
học tốt