K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

undefinedChúc bạn học tốt!ok

10 tháng 4 2017

lac de

19 tháng 4 2021
Bạn Phong Thần trả lời hay quá.
10 tháng 2 2021

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

\(M=\left ( \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \right )-\left ( \frac{2}{4^2}+\frac{4}{4^4}+...+\frac{2016}{4^{2016}} \right )=A-B\)

Xét \(A= \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \Rightarrow 16A=4+\frac{3}{4}+\frac{5}{4^3}+...+\frac{2015}{4^{2013}}\)

\(\Rightarrow 15A=4+2\underbrace{\left ( \frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2013}} \right )}_{T}-\frac{2015}{4^{2015}}\)

Lại có \(16T=4+\frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2011}}\Rightarrow 15T=4-\frac{1}{4^{2013}}\)

Do đó \(A=\frac{1}{15}\left ( 4+\frac{8}{15}-\frac{2}{15.4^{2013}}-\frac{2015}{4^{2015}} \right )\)

Thực hiện tương tự, suy ra

\(B=\frac{1}{15}\left ( 2+\frac{2}{15}-\frac{2}{15.4^{2014}}-\frac{2016}{4^{2016}} \right )\)

\(\Rightarrow M=A-B=\frac{1}{15}\left ( \frac{12}{5}-\frac{90692}{15.4^{2014}} \right )<\frac{1}{15}.\frac{12}{5}=\frac{4}{25}\)

Ta có đpcm

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)

22 tháng 4 2017

Ta có:

\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)

\(=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)

\(=1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{1}{2016}\right)\)

\(=\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2016}+\dfrac{2017}{2017}\)

\(=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

Do đó: \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\right)}=\dfrac{1}{2017}\)

Vậy...

5 tháng 5 2017

\(A=\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+...+\dfrac{2016}{2^{2017}}\\ 2A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2016}{2^{2016}}\\ 2A-A=\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2016}{2^{2016}}\right)-\left(\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+...+\dfrac{2016}{2^{2017}}\right)\\ A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}-\dfrac{2016}{2^{2017}}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}-\dfrac{2016}{2^{2016}}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}-\dfrac{2016}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}-\dfrac{2016}{2^{2017}}\right)\\ A=1-\dfrac{2017}{2^{2016}}-\dfrac{2016}{2^{2017}}\\ A=1-\dfrac{4034}{2^{2017}}-\dfrac{2016}{2^{2017}}\\ A=1-\left(\dfrac{4034}{2^{2017}}+\dfrac{2016}{2^{2017}}\right)\\ A=1-\dfrac{6050}{2^{2017}}< 1\)

Vậy \(A< 1\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:
\(M=\frac{3}{4}+\frac{3^2}{4^2}+\frac{3^3}{4^3}+..+\frac{3^{2016}}{4^{2016}}\)

\(\Rightarrow \frac{4}{3}M=1+\frac{3}{4}+\frac{3^2}{4^2}+..+\frac{3^{2015}}{4^{2015}}\)

Trừ theo vế:

\(\frac{4}{3}M-M=1-\frac{3^{2016}}{4^{2016}}\)

\(\Rightarrow M=3-\frac{3^{2017}}{4^{2016}}\)

\(\Rightarrow \left \lfloor M \right \rfloor=\left \lfloor 3-\frac{3^{2017}}{4^{2016}} \right \rfloor\)

Ta thấy \(2<3-\frac{3^{2017}}{4^{2016}}<3\) nên \(\Rightarrow \left \lfloor M \right \rfloor=\left \lfloor 3-\frac{3^{2017}}{4^{2016}} \right \rfloor=2\)

14 tháng 10 2018

Sao \(2< 3-\dfrac{3^{2017}}{4^{2016}}\) được vậy ?

a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)

\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)

=>x=13/12

b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)

\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)

\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)

\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)

\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)

d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)

\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)

e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)

=>x+2020=0

hay x=-2020