Một tổ có 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. Tìm xác suất sao cho trong hai người đó :
a) Cả hai đều là nữ
b) Không có nữ nào
c) Ít nhất một người là nữ
d) Có đúng một người là nữ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn là . Kí hiệu A k là biến cố: "Trong hai ngườiđã chọn, có đúng k nữ", k = 0, 1, 2
a) Cần tính P ( A 2 ) .
Ta có:
b) Tương tự
Chọn B.
Phương pháp
Tính xác suất theo định nghĩa P A = n A n Ω với n(A) là số phần tử của biến cố A, n Ω là số phấn tử
của không gian mẫu.
Cách giải:
Số phần tử của không gian mẫu n Ω = C 20 2
Gọi A là biến cố “Hai người được chọn có it nhất một nữ” thì A là biến cố hai người được chọn không có nữ nào, tức là ta chọn 2 người trong số 7 nam.
Khi đó n A = C 7 2 ⇒ n A = C 10 2 - C 7 2
Xác suất để hai người được chọn có it nhất một nữ là P = C 10 2 - C 7 2 C 10 2 = 8 15
Số cách chọn 2 bạn bất kì trong 10 bạn đó là \(C_{10}^2\)
Cách 1:
Trường hợp 1: Hai bạn được chọn gồm 1 nam và 1 nữ
Có 7 cách chọn một bạn nam
Có 3 cách chọn một bạn nữ
=> Có 3.7 =21 cách chọn
Trường hợp 2: Hai bạn được chọn đều là nữ
Số cách chọn 2 trong 3 bạn nữ là: \(C_3^2\)
=> Xác suất để trong hai người được chọn có ít nhất một nữ là: \(\frac{{21 + C_3^2}}{{C_{10}^2}} = \frac{8}{{15}}\)
Chọn B.
Cách 2:
Gọi A là biến cố: “trong hai người được chọn có ít nhất một nữ”
Biến cố đối \(\overline A \): “trong hai người được không có bạn nữ nào” hay “hai người được chọn đều là nam”
Ta có: Số cách chọn 2 trong 7 bạn nam là \(n(\overline A ) = C_7^2\)
\(\begin{array}{l} \Rightarrow P(\overline A ) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{{21}}{{45}} = \frac{7}{{15}}\\ \Rightarrow P(A) = 1 - P(\overline A ) = 1 - \frac{7}{{15}} = \frac{8}{{15}}\end{array}\)
Chọn B.
Đáp án A
Không gian mẫu là “Chọn ngẫu nhiên 2 người từ 10 học sinh trong tổ đó”. Suy ra số phần tử trong không gian mẫu là n ( Ω ) = C 10 2
Gọi A là biến cố “2 người được chọn là nữ” thì kết quả thuận lợi cho biến cố A là n ( A ) = C 3 2
Vậy xác suất cần tính là P ( A ) = n ( A ) n ( Ω ) = C 3 2 C 10 2 = 1 15 .