Tìm phân số \(\dfrac{a}{b}\)có giá trị bằng:
\(\dfrac{15}{35}\)biết UWCLN (a,b). BCNN [a,b] = 3549
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a/b=15/35=3/7
=>a:3=b:7
=>a=3/7b
mà ƯCLN(a,b).BCNN(a,b)=a.b
=>3/7b.b=3549
=>b=91, a=3/7b=39
Ta có: \(\frac{a}{b}\)= \(\frac{15}{35}\)= \(\frac{3}{7}\).
Suy ra: a= 3K; b= 7K, với k thuộc N*.
Ta có: ƯCLN (a,b)= ƯCLN(3K,7K)= K
a)\(\frac{a}{b}=\frac{36}{45}=\frac{4}{5}\)
\(=>\frac{a}{b}=\frac{4k}{5k}\)
\(=>ƯCLN\left(a,b\right)=ƯCLN\left(4k,5k\right)=4.5.k=20k=300\)
\(=>k=\frac{300}{20}=15\)
\(=>a=4.15=60;b=5.15=75\)
\(=>\) \(\frac{a}{b}=\frac{60}{75}\)
b)\(\frac{a}{b}=\frac{21}{35}=\frac{3}{5}\)
\(=>\frac{a}{b}=\frac{3.30}{5.30}=\frac{90}{150}\)
c)\(\frac{a}{b}=\frac{15}{35}=\frac{3}{7}\)
\(=>\frac{a}{3}=\frac{b}{7}\)hay\(\frac{a}{3}.\frac{b}{7}=\left(\frac{a}{3}\right)^2=\frac{ab}{21}=\frac{3549}{21}=169\)
\(\frac{a}{3}=13;-13=>a=39;-39,b=91;-91\)
\(=>\frac{a}{b}=\frac{39}{91}hay\frac{a}{b}=\frac{-39}{-91}\)
a) \(\frac{a}{b}=\frac{36}{45}=\frac{4}{5}\)
\(\RightarrowƯCLN=\frac{a}{4}\).
Mà BCNN = \(\frac{ab}{ƯCLN}\)
\(\Rightarrow300=\frac{ab}{\left(\frac{a}{4}\right)}\)
Suy ra b = 75
Suy ra a = 60
b với c tương tự nha bn!!!
Theo bài ra , ta có :
2135 =35 =ab mà UCLN(a,b) = 30
=) ab =35 =3×305×30 =90150
Vậy phân số mới là 90150
\(\dfrac{a}{b}=\dfrac{15}{35}=\dfrac{3}{7}\)
Gọi \(ƯCLN\left(a,b\right)=d\Rightarrow\left\{{}\begin{matrix}a=d.a_1\\b=d.b_1\\a_1,b_1\in N;ƯCLN\left(a_1;b_1\right)=1\end{matrix}\right.\) \(\left(1\right)\)
\(\Rightarrow BCNN\left(a,b\right)=3549\)
Mà \(\dfrac{a}{b}=\dfrac{3}{7}\Rightarrow\dfrac{d.a_1}{d.b_1}=\dfrac{3}{7}\Rightarrow\dfrac{a_1}{b_1}=\dfrac{3}{7}\Rightarrow\left[{}\begin{matrix}a_1=3\\b_1=7\end{matrix}\right.\) (do \(ƯCLN\left(a_1,b_1\right)=1\)) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\) ta có :
\(d.3.7=3549\) \(\Rightarrow d=169\)
\(\Rightarrow\left[{}\begin{matrix}a=169.3=507\\b=169.7=1183\end{matrix}\right.\) (thỏa mãn)
Vậy phân số \(\dfrac{a}{b}\) cần tìm là \(\dfrac{507}{1183}\)
~ Chúc bn học tốt ~
Nhìn đây mà rút kinh nghiệm!
Giải:
Ta cần chứng minh \(\left(a,b\right).\left[a,b\right]=ab\)
Gọi \(d=\left(a,b\right)\) thì \(\left\{{}\begin{matrix}a=da'\\b=db'\end{matrix}\right.\) \(\left(1\right).\) Trong đó \(\left(a',b'\right)=1\)
Đặt \(\dfrac{ab}{d}=m\left(2\right),\) Ta cần chứng minh rằng \(\left[a,b\right]=m\)
Để chứng minh điều này, cần chứng tỏ tồn tại các số tự nhiên \(x,y\) sao cho \(m=ax,m=by\) và \(\left(x,y\right)=1\)
Thật vậy từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\left\{{}\begin{matrix}m=a.\dfrac{b}{d}=ab'\\m=b.\dfrac{a}{d}=ba'\end{matrix}\right.\) Do đó ta chọn \(x=b',y=a'.\) Thế thì:
\(\left(x,y\right)=1\) vì \(\left(a',b'\right)=1\)
Vậy \(\dfrac{ab}{d}=\left[a,b\right],\) Tức là \(\left(a,b\right).\left[a,b\right]=ab\) (Đpcm) \((*)\)
Ta có:
\(\dfrac{a}{b}=\dfrac{15}{35}\Rightarrow\dfrac{a}{15}=\dfrac{b}{35}\)
Đặt \(\dfrac{a}{15}=\dfrac{b}{35}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=15k\\b=35k\end{matrix}\right.\)
Mà \(\left(a,b\right).\left[a,b\right]=ab=3549\) (Từ (1))
\(\Rightarrow15k.35k=3549\Leftrightarrow k=\pm2,6\)
Thay vào ta tính được:
\(a=39,b=91\Rightarrow\dfrac{a}{b}=\dfrac{39}{91}\)
Thử lại đúng \(100\%.\) Hiểu không?