\(\dfrac{a}{b}\)có giá trị bằng:

\(\dfrac{15}{35...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

\(\dfrac{a}{b}=\dfrac{15}{35}=\dfrac{3}{7}\)

Gọi \(ƯCLN\left(a,b\right)=d\Rightarrow\left\{{}\begin{matrix}a=d.a_1\\b=d.b_1\\a_1,b_1\in N;ƯCLN\left(a_1;b_1\right)=1\end{matrix}\right.\) \(\left(1\right)\)

\(\Rightarrow BCNN\left(a,b\right)=3549\)

\(\dfrac{a}{b}=\dfrac{3}{7}\Rightarrow\dfrac{d.a_1}{d.b_1}=\dfrac{3}{7}\Rightarrow\dfrac{a_1}{b_1}=\dfrac{3}{7}\Rightarrow\left[{}\begin{matrix}a_1=3\\b_1=7\end{matrix}\right.\) (do \(ƯCLN\left(a_1,b_1\right)=1\)) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\) ta có :

\(d.3.7=3549\) \(\Rightarrow d=169\)

\(\Rightarrow\left[{}\begin{matrix}a=169.3=507\\b=169.7=1183\end{matrix}\right.\) (thỏa mãn)

Vậy phân số \(\dfrac{a}{b}\) cần tìm là \(\dfrac{507}{1183}\)

~ Chúc bn học tốt ~

6 tháng 5 2017

Nhìn đây mà rút kinh nghiệm!

Giải:

Ta cần chứng minh \(\left(a,b\right).\left[a,b\right]=ab\)

Gọi \(d=\left(a,b\right)\) thì \(\left\{{}\begin{matrix}a=da'\\b=db'\end{matrix}\right.\) \(\left(1\right).\) Trong đó \(\left(a',b'\right)=1\)

Đặt \(\dfrac{ab}{d}=m\left(2\right),\) Ta cần chứng minh rằng \(\left[a,b\right]=m\)

Để chứng minh điều này, cần chứng tỏ tồn tại các số tự nhiên \(x,y\) sao cho \(m=ax,m=by\)\(\left(x,y\right)=1\)

Thật vậy từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\left\{{}\begin{matrix}m=a.\dfrac{b}{d}=ab'\\m=b.\dfrac{a}{d}=ba'\end{matrix}\right.\) Do đó ta chọn \(x=b',y=a'.\) Thế thì:

\(\left(x,y\right)=1\)\(\left(a',b'\right)=1\)

Vậy \(\dfrac{ab}{d}=\left[a,b\right],\) Tức là \(\left(a,b\right).\left[a,b\right]=ab\) (Đpcm) \((*)\)

Ta có:

\(\dfrac{a}{b}=\dfrac{15}{35}\Rightarrow\dfrac{a}{15}=\dfrac{b}{35}\)

Đặt \(\dfrac{a}{15}=\dfrac{b}{35}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=15k\\b=35k\end{matrix}\right.\)

\(\left(a,b\right).\left[a,b\right]=ab=3549\) (Từ (1))

\(\Rightarrow15k.35k=3549\Leftrightarrow k=\pm2,6\)

Thay vào ta tính được:

\(a=39,b=91\Rightarrow\dfrac{a}{b}=\dfrac{39}{91}\)

Thử lại đúng \(100\%.\) Hiểu không?

Giải:

Ta cần chứng minh (a,b).[a,b]=ab(a,b).[a,b]=ab

Gọi d=(a,b)d=(a,b) thì {a=dab=db{a=da′b=db′ (1).(1). Trong đó (a,b)=1(a′,b′)=1

Đặt abd=m(2),abd=m(2), Ta cần chứng minh rằng [a,b]=m[a,b]=m

Để chứng minh điều này, cần chứng tỏ tồn tại các số tự nhiên x,yx,y sao cho m=ax,m=bym=ax,m=by và (x,y)=1(x,y)=1

Thật vậy từ (1)(1) và (2)(2) suy ra:

⎪ ⎪⎪ ⎪m=a.bd=abm=b.ad=ba{m=a.bd=ab′m=b.ad=ba′ Do đó ta chọn x=b,y=a.x=b′,y=a′. Thế thì:

(x,y)=1(x,y)=1 vì (a,b)=1(a′,b′)=1

Vậy abd=[a,b],abd=[a,b], Tức là (a,b).[a,b]=ab(a,b).[a,b]=ab (Đpcm) ()(∗)

Ta có:

ab=1535a15=b35ab=1535⇒a15=b35

Đặt a15=b35=ka15=b35=k {a=15kb=35k⇒{a=15kb=35k

Mà (a,b).[a,b]=ab=3549(a,b).[a,b]=ab=3549 (Từ (1))

15k.35k=3549k=±2,6⇒15k.35k=3549⇔k=±2,6

Thay vào ta tính được:

a=39,b=91ab=3991

8 tháng 3 2017

(a,b)*[a,b]=a*b

28 tháng 2 2016

Ta có: a/b=36/45=4/5 Suy ra a=4k, b=5k

Suy ra BCNN(a;b)=BCNN(4k;5k)=22.5.k=20k

Mà BCNN(a;b)=300

Suy ra 20k=300

Suy ra k=300:20=15 Suy ra a=60,b=75

b) Ta có 21/35=3/5

ta có 3/5 là phân số tối giản bằng phân số a/b suy ra phân số a/b đã chia cho ƯCLN (a;b)=30 để được 1 phân số tối giản là 3/5

Suy ra a=3.30=90, b=5.30=160

c) Ta có BCNN(a;b).ƯCLN (a,b)=ab=3549

Ta có: a/b=15/35=3/7 suy ra a=3k, b=7k

Suy ra a.b=3k.7k=3549

Suy ra 21.k2=3549

Suy ra k2=169 Suy ra k=13

7 tháng 4 2016

b,90/150

 

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi