a^3(b^2-c^2)+b^3(c^2-a^2)+c^3(a^2-b^2) <0
vs a<b<C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)
Biến đổi:
\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)
\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)
\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)
Áp dụng BĐT Am-Gm:
\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$
Vì \(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)
\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)
\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.
Bài 2a)
Ta có
\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)
\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)
\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)
Vì \(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)
\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)
Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
\(a^3b^2-a^3c^2+b^3c^2-b^3a^2+c^3a^2-c^3b^2\)
\(=a^2b^2\left(a-b\right)-c^2\left(a^3-b^3\right)+c^3\left(a^2-b^2\right)\)
\(=a^2b^2\left(a-b\right)-c^2\left(a-b\right)\left(a^2+ab+b^2\right)+c^3\left(a+b\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2b^2-c^2a^2-c^2ab-c^2b^2+c^3a+c^3b\right)\)
\(=\left(a-b\right)\left[\left(a^2b^2-c^2b^2\right)-\left(c^2a^2-c^3a\right)-\left(c^2ab-c^3b\right)\right]\)
\(=\left(a-b\right)\left[b^2\left(a-c\right)\left(a+c\right)-c^2a\left(a-c\right)-c^2b\left(a-c\right)\right]\)
\(=\left(a-b\right)\left[\left(a-c\right)\left(b^2a+b^2c-c^2a-c^2b\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[\left(b^2a-c^2a\right)+\left(b^2c-c^2b\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[a\left(b-c\right)\left(b+c\right)+bc\left(b-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)
\(a< b< c\Leftrightarrow\left\{{}\begin{matrix}a-b< 0\\a-c< 0\\b-c< 0\end{matrix}\right.\)
ab+ac+bc hiển nhiên lớn hơn 0 suy ra tích nhỏ hơn 0 => đpcm