(52016+52015+52014):52014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A= 52014-52013+52012⋮105
A= 5^2011(5^3- 5^2)+5
A=5^2011(125- 25)+5
A= 5^2011. 105
=> A:105(đpcm)
5^2014-5^2013+5^2012
=5^2012(5^2-5^1+1)
=5^2012.21 =5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
chúc bạn học tốt
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
a)
Ta có:
1030=(103)10=100010
2100=(210)10=102410
Vì 100010<102410
⇒1030<2100 (1)
Ta có:
2100=231.269=231.263.26=231(29)7.64=231.5127.64
1031=231.531=231.528.53=231.(54)7.125=231.6257.125
Vì 231.5127.64<231.6257.125
⇒2100<1031 (2)
Từ (1) và (2)⇒1030<2100<1031
Vậy 2100 có 31 chữ số
Ta có:
\(C=5+5^2+5^3+...+5^{2016}\)
\(C=5\cdot\left(1+5+5^2+...+5^{2015}\right)\)
\(\dfrac{C}{5}=1+5+5^2+...+5^{2015}\)
Mà: \(1+5+5^2+...+5^{2015}\) là 1 số nguyên nên
\(\dfrac{C}{5}\) là số nguyên: \(\Rightarrow C\) ⋮ 5
Nên C là hợp số
1 số mà mũ bao nhiêu lần đi nữa thì được 1 số sẽ chia hết cho số ban đầu
\(Vì\) \(5;5^2;5^3;5^4;5^5;...5^{2016}\) đều chia hết cho 5
Các số hạng trong 1 tổng đều chia hết cho 1 số thì tổng đó chia hết cho số đã cho
\(\Rightarrow\)\(5+5^2+5^3+5^4+...+5^{2016}⋮5\) và là hợp số
Vậy C là hợp số
Chữ nhỏ đọc ko dc
(5^2016+5^2015+5^2014):5^2014
phải ko ?