K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

2 tháng 2 2021

\(\dfrac{h_b}{h_a^2}+\dfrac{h_c}{h_b^2}+\dfrac{h_a}{h_c^2}=\dfrac{\dfrac{2S_{ABC}}{b}}{\dfrac{4S_{ABC}^2}{a^2}}+\dfrac{\dfrac{2S_{ABC}}{c}}{\dfrac{4S^2_{ABC}}{b^2}}+\dfrac{\dfrac{2S_{ABC}}{a}}{\dfrac{4S_{ABC}^2}{c^2}}\)

\(=\dfrac{a^2}{2bS_{ABC}}+\dfrac{b^2}{2cS_{ABC}}+\dfrac{c^2}{2aS_{ABC}}\)

\(=\dfrac{1}{2S_{ABC}}\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\)

\(\ge\dfrac{1}{2.\dfrac{a+b+c}{2}r}.\dfrac{\left(a+b+c\right)^2}{a+b+c}=\dfrac{1}{r}\)

Hình như có dấu = chứ nhỉ

Đẳng thức xảy ra khi tam giác ABC đều

NV
28 tháng 1 2021

\(a=2b-2c\Rightarrow sinA.2R=2sinB.2R-2sinC.2R\)

\(\Rightarrow sinA=2sinB-2sinC\)

\(ah_a=bh_b=ch_c\Rightarrow\left(2b-2c\right)h_a=bh_b=ch_c\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{h_a}=\dfrac{2b-2c}{b}.\dfrac{1}{h_b}\\\dfrac{1}{h_a}=\dfrac{2b-2c}{c}.\dfrac{1}{h_c}\end{matrix}\right.\) 

\(\Rightarrow\dfrac{1}{h_a}=\dfrac{1}{h_b}-\dfrac{1}{h_c}+\left(\dfrac{b}{c.h_c}-\dfrac{c}{b.h_b}\right)\)

Câu này đề sai tiếp, biểu thức \(\dfrac{b}{c.h_c}-\dfrac{c}{b.h_b}\) kia không thể bằng 0

14 tháng 6 2019

A B C a b c

Có \(\sin\widehat{A}=\frac{h_c}{b}=\frac{h_b}{c}=\frac{h_c-h_b}{b-c}=\frac{h_b-h_c}{\frac{a}{k}}=\frac{k\left(h_b-h_c\right)}{a}\) (1) 

Lại có : \(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}}\)\(\Rightarrow\)\(k\left(\sin\widehat{B}-\sin\widehat{C}\right)=\frac{k\left(h_c-h_b\right)}{a}\) (2) 

(1) (2) ... 

14 tháng 6 2019

\(\sin\widehat{B}=\frac{h_a}{c}\)\(;\)\(\sin\widehat{C}=\frac{h_a}{b}\) (1) 

\(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}h_c=\sin\widehat{B}.a\\h_b=\sin\widehat{C}.a\end{cases}}}\)\(\Rightarrow\)\(k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)=\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)\) (2)  

Thay (1) vào (2) ta được \(\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)=\frac{k}{a}.\left(\frac{b}{h_a}-\frac{c}{h_a}\right)=\frac{k}{a}.\frac{\frac{a}{k}}{h_a}=\frac{1}{h_a}\)

đpcm 

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alpha

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)

=\sin \alpha .

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alpha

1 tháng 7 2021

1.

\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)

\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)

\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)

\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)

\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)

Sao t lại đc như này v, ai check hộ phát

21 tháng 9 2018

\(\dfrac{a.h_a}{2}=S\Leftrightarrow a=\dfrac{2S}{h_a}\)

Tương tự:

\(b=\dfrac{2S}{h_b};c=\dfrac{2S}{h_c}\)

\(\dfrac{a+b+c}{4S}=\dfrac{\dfrac{2S}{h_a}+\dfrac{2S}{h_b}+\dfrac{2S}{h_c}}{4S}=\dfrac{2S\left(\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}\right)}{4S}=\dfrac{\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}}{2}\)

Tương đương:

\(\dfrac{1}{h_a+h_b}+\dfrac{1}{h_b+h_c}+\dfrac{1}{h_c+h_a}\le\dfrac{\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}}{2}\)

Cauchy-Schwarz:

\(\dfrac{1}{h_a+h_b}\le\dfrac{1}{4}\left(\dfrac{1}{h_a}+\dfrac{1}{h_b}\right)\)

\(\dfrac{1}{h_b+h_c}\le\dfrac{1}{4}\left(\dfrac{1}{h_b}+\dfrac{1}{h_c}\right)\)

\(\dfrac{1}{h_c+h_a}\le\dfrac{1}{4}\left(\dfrac{1}{h_c}+\dfrac{1}{h_a}\right)\)

Cộng theo vế suy ra đpcm