Tam giác ABC có \(b+c=2a\). Chứng minh rằng :
a) \(2\sin A=\sin B+\sin C\)
b) \(\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{h_b}{h_a^2}+\dfrac{h_c}{h_b^2}+\dfrac{h_a}{h_c^2}=\dfrac{\dfrac{2S_{ABC}}{b}}{\dfrac{4S_{ABC}^2}{a^2}}+\dfrac{\dfrac{2S_{ABC}}{c}}{\dfrac{4S^2_{ABC}}{b^2}}+\dfrac{\dfrac{2S_{ABC}}{a}}{\dfrac{4S_{ABC}^2}{c^2}}\)
\(=\dfrac{a^2}{2bS_{ABC}}+\dfrac{b^2}{2cS_{ABC}}+\dfrac{c^2}{2aS_{ABC}}\)
\(=\dfrac{1}{2S_{ABC}}\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\)
\(\ge\dfrac{1}{2.\dfrac{a+b+c}{2}r}.\dfrac{\left(a+b+c\right)^2}{a+b+c}=\dfrac{1}{r}\)
Hình như có dấu = chứ nhỉ
Đẳng thức xảy ra khi tam giác ABC đều
\(a=2b-2c\Rightarrow sinA.2R=2sinB.2R-2sinC.2R\)
\(\Rightarrow sinA=2sinB-2sinC\)
\(ah_a=bh_b=ch_c\Rightarrow\left(2b-2c\right)h_a=bh_b=ch_c\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{h_a}=\dfrac{2b-2c}{b}.\dfrac{1}{h_b}\\\dfrac{1}{h_a}=\dfrac{2b-2c}{c}.\dfrac{1}{h_c}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{h_a}=\dfrac{1}{h_b}-\dfrac{1}{h_c}+\left(\dfrac{b}{c.h_c}-\dfrac{c}{b.h_b}\right)\)
Câu này đề sai tiếp, biểu thức \(\dfrac{b}{c.h_c}-\dfrac{c}{b.h_b}\) kia không thể bằng 0
Có \(\sin\widehat{A}=\frac{h_c}{b}=\frac{h_b}{c}=\frac{h_c-h_b}{b-c}=\frac{h_b-h_c}{\frac{a}{k}}=\frac{k\left(h_b-h_c\right)}{a}\) (1)
Lại có : \(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}}\)\(\Rightarrow\)\(k\left(\sin\widehat{B}-\sin\widehat{C}\right)=\frac{k\left(h_c-h_b\right)}{a}\) (2)
(1) (2) ...
\(\sin\widehat{B}=\frac{h_a}{c}\)\(;\)\(\sin\widehat{C}=\frac{h_a}{b}\) (1)
\(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}h_c=\sin\widehat{B}.a\\h_b=\sin\widehat{C}.a\end{cases}}}\)\(\Rightarrow\)\(k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)=\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)\) (2)
Thay (1) vào (2) ta được \(\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)=\frac{k}{a}.\left(\frac{b}{h_a}-\frac{c}{h_a}\right)=\frac{k}{a}.\frac{\frac{a}{k}}{h_a}=\frac{1}{h_a}\)
đpcm
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
\(\dfrac{a.h_a}{2}=S\Leftrightarrow a=\dfrac{2S}{h_a}\)
Tương tự:
\(b=\dfrac{2S}{h_b};c=\dfrac{2S}{h_c}\)
\(\dfrac{a+b+c}{4S}=\dfrac{\dfrac{2S}{h_a}+\dfrac{2S}{h_b}+\dfrac{2S}{h_c}}{4S}=\dfrac{2S\left(\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}\right)}{4S}=\dfrac{\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}}{2}\)
Tương đương:
\(\dfrac{1}{h_a+h_b}+\dfrac{1}{h_b+h_c}+\dfrac{1}{h_c+h_a}\le\dfrac{\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}}{2}\)
Cauchy-Schwarz:
\(\dfrac{1}{h_a+h_b}\le\dfrac{1}{4}\left(\dfrac{1}{h_a}+\dfrac{1}{h_b}\right)\)
\(\dfrac{1}{h_b+h_c}\le\dfrac{1}{4}\left(\dfrac{1}{h_b}+\dfrac{1}{h_c}\right)\)
\(\dfrac{1}{h_c+h_a}\le\dfrac{1}{4}\left(\dfrac{1}{h_c}+\dfrac{1}{h_a}\right)\)
Cộng theo vế suy ra đpcm