Chứng tỏ
A = \(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{22}>\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\dfrac{1}{12}>\dfrac{1}{22};\dfrac{1}{13}>\dfrac{1}{22};....;\dfrac{1}{21}>\dfrac{1}{22}\)
Vậy : \(B=\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{22}>\dfrac{1}{22}+\dfrac{1}{22}+\dfrac{1}{22}+...+\dfrac{1}{22}=\dfrac{11}{22}=\dfrac{1}{2}\)
( Có 11 số hạng \(\dfrac{1}{2}\))
Hay B \(>\dfrac{1}{2}\)
Lời giải:
Ta có:
\(\left\{\begin{matrix} \frac{1}{13}< \frac{1}{12}\\ \frac{1}{14}< \frac{1}{12}\\ \frac{1}{15}< \frac{1}{12}\end{matrix}\right.\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}(1)\)
\(\left\{\begin{matrix} \frac{1}{61}< \frac{1}{60}\\ \frac{1}{62}< \frac{1}{60}\\ \frac{1}{63}< \frac{1}{60}\end{matrix}\right.\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)
Hay \( \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
Ta có đpcm.
Đặt A là biểu thức đó
Ta có:
\(\dfrac{1}{13}< \dfrac{1}{12};\dfrac{1}{14}< \dfrac{1}{12};\dfrac{1}{15}< \dfrac{1}{12}\)
\(\Rightarrow\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}\)
Ta cũng có
\(\dfrac{1}{61}< \dfrac{1}{60};\dfrac{1}{62}< \dfrac{1}{60};\dfrac{1}{63}< \dfrac{1}{60}\)
\(\Rightarrow\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
\(\Rightarrow\)dpcm
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)
Giải
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)
Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
D< 1 - \(\dfrac{1}{20}\)
D< \(\dfrac{19}{20}\)<1
\(\Rightarrow\)D< 1
Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1
A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)
A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)
Ta có :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :
\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1
A<\(\dfrac{49}{200}< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
bài 2
a;đặt biểu thức là S | |
S < 1/1.2 + 1/2.3 + .......1/(n-1)n | |
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n | |
= 1 -1/n <1 |
|
vậy S < 1 | |
Ta có: A\(=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}=\dfrac{2}{45}\)
\(A=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}\)
\(=\dfrac{2}{45}\)
-Chúc bạn học tốt-
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=-1+1-\dfrac{1}{3}\)
\(=0-\dfrac{1}{3}\)
\(=\dfrac{-1}{3}\)
------------------------------------------
\(14.\dfrac{3}{2}+\dfrac{6}{5}:\left(-\dfrac{2}{5}\right)\)
\(=14.\dfrac{3}{2}+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\left(-3\right)\)
\(=18\)
------------------------------------------------
\(\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\left(\dfrac{1}{3}\right)^2}\)
\(=\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{3}{12}+\dfrac{8}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{11}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{99}{108}-\dfrac{12}{108}}\)
\(=\sqrt{\dfrac{29}{36}}\)
\(=\dfrac{\sqrt{29}}{6}\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\dfrac{5}{4}+\dfrac{5}{13}-\dfrac{1}{4}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{5}{4}-\dfrac{1}{4}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=1+\left(-1\right)-\dfrac{1}{3}=0-\dfrac{1}{3}=-\dfrac{1}{3}\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)
Vậy \(x\in\left\{22;23;24;...\right\}\)
\(\dfrac{1}{12}>\dfrac{1}{22};\dfrac{1}{13}>\dfrac{1}{22};...;\dfrac{1}{21}>\dfrac{1}{22};\dfrac{1}{22}=\dfrac{1}{22}\)
\(\Rightarrow\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{22}>\dfrac{1}{22}.11\) (do A có 11 số hạng)
\(\Leftrightarrow A>\dfrac{11}{22}=\dfrac{1}{2}\) ( đpcm)