K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Ta có BĐT \(x^2+y^2\ge2xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)

Đẳng thức xảy ra khi \(x-y=0\Leftrightarrow x=y\)

Suy ra \(x+y\ge2\sqrt{xy}\Leftrightarrow2\ge2\sqrt{xy}\Leftrightarrow1\ge xy\)

Đẳng thức xảy ra khi \(x=y=1\)

Vậy GTLN của đơn thức \(xy=1\) khi \(x=y=1\)

êu , sao \(x^2-2xy+y^2\ge0\)thì \(\left(x-y\right)^2>0\)

Câu 3:

a: A(x)=x^3+3x^2-4x-12

B(x)=x^3-3x^2+4x+18

A(x)+B(x)

=x^3+3x^2-4x-12+x^3-3x^2+4x+18

=2x^3+6

A(x)-B(x)

=x^3+3x^2-4x-12-x^3+3x^2-4x-18

=6x^2-8x-30

b: A(-2)=(-8)+3*4-4*(-2)-12

=-20+3*4+4*2=0

=>x=-2 là nghiệm của A(x)

B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10

=>x=-2 ko là nghiệm của B(x)

 

24 tháng 10 2015

ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

            \(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)

             \(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)

ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\)\(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)

vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6

 

a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5

Bậc: 10

b: y=-x/3 và x+y=2

=>x+y=2 và -1/3x-y=0

=>x=3 và y=-1

Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5

28 tháng 1 2022

bạn có thể gõ latex đc ko

Cái biểu tượng nằm ở ngay góc trên cùng bên trái khung câu hỏi 

28 tháng 1 2022

Ta có : 

\(p=n-m=x^2y^2.xy^2z^2=x^3y^4z^2-3\left(x^2y^4z^2\right)=x^3y^4z^2-3x^2y^4z^2\)

Thay x = z = -2 ; y = -1 ta được : 

\(=-8.1.4-3.4.1.4=-32-48=-80\)

26 tháng 3 2022

cần gấp

 

 

21 tháng 3 2021

Bài 1

a, 1/5xy^2(-5xy )= -x^2y^3

-hệ số :-1 biến :x^2y^3

b, x^3(-1/3y)1/5x^2y=-1/15x^5y^2

-Hệ số :-1/15, biến :x^5y^2

21 tháng 3 2021

Làm nữa đi mà😢😢

7 tháng 3 2022

\(a,\left(-\dfrac{1}{2}\right)xy^2.2x^3=-x^4y^2\)

Bậc: 6

b, thay \(x=2,y=\dfrac{1}{4}\) vào biểu thức ta có:
\(-x^4y^2=-2^4.\left(\dfrac{1}{4}\right)^2=-16.\dfrac{1}{16}=-1\)

17 tháng 3 2019

a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)

\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)

\(B=1x^4y^5\)

Hệ số: 1

Bậc: 9

Chưa định hình phần b) nó là như nào

19 tháng 4 2018

a, P=-3(x^3.x)(y^2.y^3)

      =-3x^4y^5

b, Thay x=-1 , y=2 vào đơn thức P . Ta có :

P=-3.(-1)^4.2^5

P=3.1.32

P=96