K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

H A B C D K E

a) Xét hai tam giác vuông ABD và ACE ta có:

AB = AC (gt)

 là góc chung

Vậy \(\Delta ABD=\Delta ACE\) (cạnh huyền-góc nhọn) (1)

b) Từ (1) \(\Rightarrow AE=AD\)(2 cạnh tương ứng)

nên \(\Delta AED\) là tam giác cân

c) Ta có : BD \(\perp AC\) (gt)

\(CE\perp AB\) (gt)

nên BD và CE là hai đường cao của \(\Delta ABC\)

Vì H là giao điểm của hai đường cao BD và CE nên AH cũng là đường cao của ED

Mà trong tam giác cân AED đường cao cũng là đường trung trực nên AH là đường trung trực của ED

d) Xét hai tam giác vuông CDK và CDB ta có :

DK = DB (gt)

CD là cạnh góc vuông chung

Vậy \(\Delta CDK=\Delta CDB\)(cạnh góc vuông-cạnh góc vuông) (2)

Từ (2) \(\Rightarrow CB=CK\)(2 cạnh tương ứng) (3)

Từ (1) \(\Rightarrow\) DB = EC (2 cạnh tương ứng)

mà DK = DB (gt)

\(\Rightarrow EC=DK\)(4)

Xét hai tam giác vuông ECB và DKC ta có:

CB = CK (3)

EC = DK (4)

Vậy \(\Delta ECB=\Delta DKC\) (cạnh góc vuông-cạnh huyền) (5)

Từ (5) \(\Rightarrow\widehat{ECB}\) \(=\widehat{DKC}\) (2 góc tương ứng)

7 tháng 4 2017

''ngonhuminh '' cậu có thể giúp câu hỏi này được không????

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE
hay ΔADE cân tại A

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

Do đó ΔAEH=ΔADH

Suy ra: HE=HD

hay H nằm trên đường trung trực của ED(1)

Ta có: AE=AD
nên A nằm trên đường trung trực của ED(2)

Từ (1) và (2) suy ra AH là đường trung trực của ED

27 tháng 3 2022

❤❤❤

5 tháng 5 2019

a) xét 2 tam giác vuông ABD và ACE có:

              AB=AC(gt)

             \(\widehat{A}\)chung

=> tam giác ABD=tam giác ACE(CH-GN)

b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE

=> tam giác AED cân tại A

c) ta thấy H là trực tâm của tam giác cân ABC

=> \(\widehat{BAH}\)=\(\widehat{CAH}\)

gọi O là giao điểm của AH và ED

xét tam giác AOE và tam giác AOD có:

          AE=AD(tam giác AED cân)

          \(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)

         AO chung

=> tam giác AOE=tam giác AOD(c.g.c)

=> OE=OD=> O là trung điểm của ED(1)

\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)

từ (1) và (2) => AH là trung trực của ED

A B C D E H O

5 tháng 5 2019

a) Xét tam giác ABD và tg ACE có:

                D^ = E^ = 90độ (gt)

                A là góc chung

                AB = AC ( do tam giác ABC cân tại A)

    => tam giác ABD = tam giác ACE (ch-gn)

b) Vì AD = AE ( tg ABD = tg ACE)

        => tg AED cân tại A.

c) Vì AD = AE (cmt)

       => A thuộc đường trung trực của ED.

    Xét tg AEH và tg ADH có:

            E^ = D^ = 90độ (gt) 

            AD = AE (cmt)

            AH cạnh huyền chung.

       => tg AEH = tg ADH (ch-cgv)

       => HE = HD.

       => H thuộc đường trung trực của ED.

       => AH là đường trung trực của  ED.

2 tháng 5 2015

a. Xét tam giác ABD và tam giác ACE có:

-AEC=ADB=90 (gt)

-AB=AC (2 cạnh bên tam giác cân ABC)

-A là góc chung

=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)

b.*Vì tam giác ABD = tam giác ACE (câu a)

=> BH=CH (2 cạnh tương ứng)

*Xét tam giác EHB và tam giác DHC có:

-BEH=CDH=90 (gt)

-BH=CH (CM trên)

-EHB=DHC (đối đỉnh)

=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)

=>EB=DC (2 cạnh tương ứng)

*Ta có: AB=AE+EB

        và AC=AD+DC

mà AB=AC (2 cạnh bên tam giác cân ABC) 

 và EB=DC (CM trên)

=>AE=AD

=> Tam giác ADE cân tại A (đpcm)

c. Vì AE=AD (CM trên)

    và HE=HD (CM trên)

=> AH là đường trung trực của ED (đpcm)

d. *Xét tam giác DKC và tam giác DBC có:

-BDC=KDC=90 (gt)

-BD=KD (gt)

-DC là cạnh chung

=>tam giác DKC = tam giác DBC (c.g.c)

=> DBC=DKC (2 góc tương ứng) (1)

*Vì BH=CH (câu b)

=> tam giác HBC cân tại H

=>DBC=ECB (2 góc ở đáy tam giác cân) (2)

*Từ (1) và (2) => ECB=DKC (đpcm)

11 tháng 4 2016

bạn ơi có 1 chỗ sai sao gt lại có luôn là abd=ace=90 ngay dc đó là vô lí

abd=ace đang chứng minh cơ mà

1 tháng 5 2017

a, Xét tg ABD ( D=90) và tg ACE ( E=90)

A; góc chung

AB =AC

tg ABD = tg ACE ( cạnh huyền - góc nhọn )

b, vì tg ABD =tg ACE nên AE = AD ( 2 cạnh tương ứng )      suy ra :  tg AED cân

c, Xét tg AEH ( E = 90 ) và tg ADH ( D = 90 )

 AE = AD ( cm ý b)

AH : cạnh chung 

suy ra : tg AEH = tg ADH ( cạnh góc vuông - cạnh huyền )

 suy ra AH là đường phân giác

Xét tg AED : vì trong tam giac cân, đường phân giác đồng thời là đường trung trực 

suy ra AH là đường trung trực của ED

d, Xét tg  ECB (E=90) và tg  DBC

1 tháng 5 2017

a, xét tam giác abd và tam giác ace có

 góc adb=góc aec =90(gt)

góc a chung

ab=ac (do tam giác abc cân -gt)

suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)

b, có ad=ae (do tam giác abd = tam giác ace-cmt)

suy ra tam giác aed cân tại a

c, có ad=ae (cmt)

suy ra a thuộc đường trung trực của ed

xét tam giác aeh và tam giác adh có

góc aeh = góc adh=90o (gt)

ad=ae (cmt)

ah cạnh huyền chung

suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)

suy ra hd=he

suy ra h thuộc đường trung trực của ed

suy ra ah là đường trung trực của ed

d,xét tam giác bdc và tam giác kdc có 

bd=dk (gt)

góc bdc = góc cdk (=90o-gt)

cd chung

suy ra tam giác bdc = tam giác kdc (c.g.c)

suy ra góc dbc = góc dkc       (1)

có góc bdc= góc abc - góc abd

     góc ecb= góc acb - góc ace

mà góc abc=góc acb (do tam giác abc cân tại a -gt)

      góc abd=góc ace (do tam giác abd=tam giác ace-cmt)

suy ra  góc dbc= góc ecb                 (2)

từ(1)(2) suy ra góc ecb = góc dkc