Tìm \(\overline{z}\) biết :
a) \(z=1-i\sqrt{2}\)
b) \(z=-\sqrt{2}+i\sqrt{3}\)
c) \(z=5\)
d) \(z=7i\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm \(\overline{z}\) biết :
a) \(z=1-i\sqrt{2}\)
b) \(z=-\sqrt{2}+i\sqrt{3}\)
c) \(z=5\)
d) \(z=7i\)
ta có : \(\overline{Z}=\left(\sqrt{2}+i\right)^2\left(1-\sqrt{2}i\right)\)
\(\Leftrightarrow\overline{Z}=\left(1+2\sqrt{2}i\right)\left(1-\sqrt{2}i\right)=5-\left(\sqrt{2}-2\sqrt{2}\right)i\)
\(\Rightarrow Z=5+\left(\sqrt{2}-2\sqrt{2}\right)i\)
\(\Rightarrow\) phần ảo của số phức \(Z\) là \(\sqrt{2}-2\sqrt{2}\)
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)
\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)
\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)
Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)
\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\)
\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)
Bài 4:
Ta có:Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a+b-c>0,a+c-b>0,b+c-a>0.Do đó,áp dụng bất thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y là các số dương
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{\left(a+b-c\right)+\left(a+c-b\right)}=\frac{4}{2a}=\frac{2}{a}\\\frac{1}{a+b-c+}+\frac{1}{b+c-a}\ge\frac{4}{\left(a+b-c\right)+\left(b+c-a\right)}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{\left(b+c-a\right)+\left(a+c-b\right)}=\frac{4}{2c}=\frac{2}{c}\end{matrix}\right.\)
\(\Rightarrow2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Mà \(\left\{{}\begin{matrix}b+c-a=\left(a+b+c\right)-2a=2p-2a=2\left(p-a\right)\\a+c-b=\left(a+b+c\right)-2b=2p-2b=2\left(p-b\right)\\a+b-c=\left(a+b+c\right)-2c=2p-2c=2\left(p-c\right)\end{matrix}\right.\)
\(\Rightarrow2\left[\left(\frac{1}{2\left(p-a\right)}+\frac{1}{2\left(p-b\right)}+\frac{1}{2\left(p-c\right)}\right)\right]\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a=b=c
5.
\(\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)
Tương tự: \(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế:
\(VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" ko xảy ra nên \(VT>2\)
a) (3 - 5i) + (2 + 4i) = (3 + 2) + (-5i + 4i) = 5 - i.
b) (-2 - 3i) + (-1 - 7i) = (-2 - 1) + (-3i - 7i) = -3 - 10i
c) (4 + 3i) - (5 - 7i) = (4 - 5) + (3i + 7i) = -1 + 10i
d) (2 - 3i) - ( 5 - 4i) = (2 - 5) + (-3i + 4i) = -3 + i