K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Ta tính thể tích hình chóp A’.BCB’. Gọi M là trung điểm của B’C’, ta có: ATM ⊥ B’C’ (1)

Lăng trụ ABC.A’B’C’ là lăng trụ đứng nên: BB’ ⊥ (A’B’C’) ⇒BB’⊥ A’M (2)

Từ (1) và (2) suy ra

AM⊥ (BB’C) hay A’M là đường cao của hình chóp A’.BCB’

bai-10

12 tháng 11 2018

Đáp án A

Gọi K là trọng tâm tam giác ABC. Qua K kẻ đường thẳng song song với A'B' lần lượt cắt AC; BC tại E và F. Gọi I là giao của CK và AB. Ta có

C I ⊥ A B B ' A ' ⇒ V C B A ' B ' = 1 3 . C I . S B A ' B ' = 1 3 . a 3 2 . a 2 2 = a 3 13 12 .

Kí hiệu như hình vẽ. Ta có V = V C F A ' B ' + V C E A ' F .

Mà V C E A ' F C A ' B B ' = 2 3 . 2 3 . 1 ⇒ V C E A ' F = 4 9 . 1 3 . A A ' . S A B C = 4 27 . a . a 2 3 4 = a 3 3 27 .

V C F A ' B ' C B A ' B ' = 2 3 . 1 . 1 ⇒ V C F A ' B ' = 2 3 . a 3 3 12 = a 3 13 18 . Suy ra V = a 3 3 27 + a 3 3 18 = 5 a 3 3 54 .

7 tháng 12 2017

Đáp án A.

18 tháng 8 2017

Gọi I, K lần lượt là trung điểm của AB và A’B’, G là trọng tâm của tam giác ABC.Đường thẳng qua G, song song với AB cắt AC và BC lần lượt tại E và F, đường thẳng EF chính là giao tuyến của hai mặt phẳng (GA’B’) và (ABC).

Giải bài 10 trang 27 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 10 trang 27 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 10 2019

Đáp án A

7 tháng 12 2018

Chọn đáp án C.

11 tháng 7 2019

Đáp án D

Gọi E là trung điểm của BC, F là trung điểm của BE

Khi đó M F / / A E  mà A E / / A ' N  nên  M F / / A ' N

Suy ra các điểm A ' , M , F , N  thuộc cùng một mặt phẳng

Vậy A ' M N  cắt cạnh BC tại P ⇒ P  trùng với F

Công thức tổng quát tính thể tích khối đa diện

“thể tích khối chóp cụt là V = h 3 B + B ' + B B '  với h là chiều cao, B, B’ lần lượt là diện tích hai đáy”

Và diện tích đáy B = S M B P = S A B C 8 = S 8 B ' = S A ' B ' N = S A ' B ' C ' 2 = S 2  với S = a 2 3 4  

⇒  Thể tích khối đa diện M N P . A ' B ' N  là  V = B B ' 3 S 8 + S 2 + S 8 . S 2 = 7 3 a 3 96

12 tháng 5 2019

25 tháng 12 2019

Đáp án B

Tọa độ hóa với  O ≡ N , O x ≡ N B ' , O y ≡ N A ' , O z ≡ N K và chuẩn hóa vớí a = 2 .

Ta có

A ' 0 ; 3 ; 0 , A 0 ; 3 ; 2 B 1 ; 0 ; 2 ⇒ M 1 2 ; 3 2 ; 2

⇒ N A ' → = 0 ; 3 ; 0 N M → = 1 2 ; 3 2 ; 2 ⇒ n A ' M N → = N A ' → . N M → = 2 3 ; 0 ; − 3 2

 

⇒ A ' M N : 4 x − z = 0  

Lại có

B 1 ; 0 ; 2 , K 0 ; 0 ; 2 ⇒ K B → = 1 ; 0 ; 0 ⇒ B C : x = t y = 0 z = 2

 

P = B C ∩ A ; M N ⇒ P 1 2 ; 0 ; 2  

V M B P . A ' B ' N ' = V M . A ' B ' N + V M . B P N B = V A . A ' B ' N + 1 2 V A . B P N B ' V A . A ' B ' N = 1 2 V A . A ' B ' C ' = 1 6 V A B C . A ' B ' C ' S B P N B ' = 1 2 S B C C ' B ' − S N P K = 1 2 S B C C ' B ' − 1 8 S B C C ' B ' = 3 8 S B C C ' B ' = 3 4 S B C B ' ⇒ V A . B P N B ' = 3 4 V A . B C B ' = 1 4 V A B C . A ' B ' C ' ⇒ V M B P . A ' B ' N = 7 24 V A B C . A ' B ' C ' = 7 24 A ' A . S A B C = 7 24 a . a 2 3 4 = 7 a 3 3 96

 

 

 

22 tháng 8 2017

Đáp án A

Gọi H là trung điểm của BC, giao điểm của (P) và A A '  là P.

∆ A H P    vuông tại P có  A P = A H 2 - P H 2 = 3 a 4

∆ A A ' O ~ ∆ A H P ⇒ A ' O A O = H P A P

⇒ V A B C . A ' B ' C ' = O A ' . S A B C = a 3 3 12