Cho tam giác ABC vuông tại A,đường cao AH(H thuộc BC) và phân giác BE của góc ABC(E thuộc AC) cắt nhau tại I.Chứng minh:
a) IH.AB=IA.BH
b) Tam giác BHA ~ tam giác BAC suy ra AB^2 = BH.BC
c) IH/IA = AE/EC
d) Tam giác AIE cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABH \) có BI là phân giác \(\widehat{ABH}\) ,Áp dụng tính chất đường phân giác ta có:
\(\dfrac{IH}{IA}=\dfrac{BH}{AB}\)
\(\Rightarrow IH.AB=IA.BH\)
b) Xét hai tam giác vuông \(\Delta BHA\) và \(\Delta BAC\) ta có:
\(\widehat B\) chung
\(\widehat{AHB}=\widehat{CAB}\)
Do đó \(\Delta BHA\)~\(\Delta BAC\)
\(\Rightarrow\)\(\dfrac {BH} {AB}=\dfrac{BA}{BC}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c)Ta có:\(\dfrac{IH}{IA}=\dfrac{BH}{AB}(1)\)
\(\dfrac{AE}{CE}=\dfrac{AB}{BC}\)(Be là đường phân gaics góc B)(2)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)(\(\Delta BHA\)~\(\Delta BAC\) )(3)
Từ (2) và (3) ta có:
\(\dfrac{AE}{CE}=\dfrac{BH}{AB}\)(4)
Từ (1) và (4) ta có:
\(\dfrac {IH}{IA}=\dfrac{AE}{EC}\)
d) Ta có:\(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}=90^o\)
Mà:\(\widehat{ABE}=\widehat{IBH}\)
\(\Rightarrow \widehat{BEA}=\widehat{BIH}\)
Mà \(\widehat{BIH}=\widehat{AIE}\)(đối đỉnh)
\(\Rightarrow \widehat{AIE}=\widehat{AEI} \)
Do đó \(\Delta AIE\) cân
a) \(\Delta ABH\) có \(BI\) là phân giác \(\widehat{ABH}\), áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{IH}{IA}=\frac{BH}{AB}\)
\(\Rightarrow\)\(IH.AB=IA.BH\)
b) Xét 2 tam giác vuông: \(\Delta BHA\) và \(\Delta BAC\) có:
\(\widehat{B}\) CHUNG
\(\widehat{AHB}=\widehat{CAB}\)
suy ra: \(\Delta BHA\)\(~\)\(\Delta BAC\)
\(\Rightarrow\)\(\frac{BH}{AB}=\frac{BA}{BC}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) hình như đề sai, bn ktra lại nhé
d) Ta có: \(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}\left(=90^0\right)\)
mà \(\widehat{ABE}=\widehat{IBH}\)
\(\Rightarrow\)\(\widehat{BEA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AIE}\) (đối đỉnh)
\(\Rightarrow\)\(\widehat{AIE}=\widehat{AEI}\)
\(\Rightarrow\)\(\Delta AIE\) cân
Mình bổ sung câu c nhé ^^
Ta có:\(\frac{IH}{IA}=\frac{BH}{AB}\left(1\right)\)
\(\frac{AE}{CE}=\frac{AB}{BC}\left(\text{BE là đường phân giác góc B}\right)\left(2\right)\)
\(\frac{BH}{AB}=\frac{AB}{BC}\left(\text{\Delta BHA ~\Delta BAC}\right)\left(3\right)\)
Từ (2) và (3) suy ra:
\(\frac{AE}{CE}=\frac{BH}{AB}\left(4\right)\)
Từ (1) và (4) suy ra:
\(\frac{IH}{IA}=\frac{AE}{EC}\)
Chúc bạn học tốt ^^
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
xet \(\Delta BHI\) va \(\Delta BAE\) co
\(\widehat{BAE}=\widehat{BHI}=90^0\)va \(\widehat{ABE}=\widehat{IBH}\) (BE la pg)
\(\Rightarrow\Delta BHI\simeq\Delta BAE\left(gg\right)\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{IH}{AE}\)
D,Ta co: \(\widehat{AIE}=\widehat{BIH}\left(dd\right)\)
ma \(\widehat{BIH}=\widehat{BEA}\left(\Delta BHI\simeq\Delta BAE\right)\)
\(\Rightarrow\widehat{AIE}=\widehat{BEA}\Rightarrow\Delta AIE\) can tai A
\(\Rightarrow AI=AE\)
A,\(\Rightarrow\dfrac{BH}{AB}=\dfrac{IH}{IA}\Rightarrow BH.IA=AB.IH\)
B, xet \(\Delta BHA\) va \(\Delta BAC\) co
\(\widehat{B}\) chung, \(\widehat{BAE}=\widehat{BHA}=90^0\)
\(\Rightarrow\Delta BHA\simeq\Delta BAC\left(gg\right)\)
C, Vi \(\Delta BHI\simeq\Delta BAE\)
\(\Rightarrow\dfrac{IH}{AE}=\dfrac{BH}{AB}\left(1\right)\)
Vi \(\Delta BHA\simeq\Delta BAC\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{BA}\left(2\right)\)
Tu (1) va (2)\(\Rightarrow\dfrac{HI}{AE}=\dfrac{AH}{AC}\Rightarrow\dfrac{HI}{AH}=\dfrac{AE}{AC}\)
\(\Rightarrow\dfrac{HI}{AH-HI}=\dfrac{AE}{AC-AE}\Rightarrow\dfrac{IH}{IA}=\dfrac{AE}{EC}\)
cai nay \(\simeq\) la dong dang do nha bn