Cho \(\Delta ABC\) có AB = AC = 10cm; BC = 12cm. Vẽ trung tuyến AM.
a) Chứng minh: AM \(\bot\) BC.
b) Gọi G là trọng tâm của \(\Delta ABC\). Tính độ dài các đoạn GA; GB; GC.
Giúp mk với, mk rất cần gấp, mai mk nộp rùi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có AB=12cm , AN=8cm => \(\frac{{AN}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)
AC=15cm, AM=10cm => \(\frac{{AM}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)
=> \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)
- Xét hai tam giác ABC và tam giác ANM, có
\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\), góc A chung
=> ΔABC ∽ ΔANM' (c.g.c)
a) ΔABC vuông tại A
Áp dụng định lý Pi-ta-go ta có:
BC2 = AC2+AB2
⇒BC2-AC2=AB2
⇒100-64=AB2
⇒36=AB
⇒AB=6(cm)
b) Xét ΔAIB và ΔDIB có:
góc BAI = góc BDI (= 90 độ)
Chung IB
góc IBA = góc IBD (gt)
⇒ ΔAIB = ΔDIB (ch-gn)
⇒ BA = BD (2 cạnh tương ứng)
c) Gọi giao BI và AD là F
Xét ΔABF và ΔDBF có:
AB = DB (cmb)
góc ABF = góc DBF (gt)
chung BF
⇒ ΔABF = ΔDBF (c.g.c)
⇒ FA = FD (2 cạnh tương ứng)
góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD
Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD
d) Gọi giao của BI và EC là G
Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC
a) Ta có \(AB^2+AC^2=8^2+6^2=100=BC^2\)
=> Tam giác ABC cân tại A (định lí Py-ta-go đảo)
b) Áp dụng định lí Py-ta-go trong tam giác ABD vuông tại A có
\(BD^2=AB^2+AD^2\)
\(BD^2=8^2+1^2=65\)
=> \(BD=\sqrt{65}\)
a) △ABC là △ vuông. Vì 62+82=102(Định lí Pitago đảo).
b) 4,82.AH2=82⇒AH2=64-23,04=40,96=6.42(vì AH>0)⇒AH=6.4
a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b:\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)
=>AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8cm
12 10 10 A B C M a)
Vì AM là trung tuyến đến BC, nên có \(BM=CM=\dfrac{12}{2}=6\left(cm\right)\)
Xét \(\Delta\)ABM và \(\Delta\)ACM, có:
AM là cạnh chung
AB=AC (gt)
BM=MC (AM là trung tuyến đến BC)
\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}\) và \(\widehat{AMC}\) là 2 góc kề bù, nên:
\(\widehat{AMB}+\widehat{AMC}=180độ\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90\left(độ\right)\)
\(\Rightarrow AM\perp BC\) (đpcm)
Câu b mik lm ko ra số nguyên nhé!!!
Có j thì bn thông cảm nha!
Chúc bạn học tốt!!!
Bn tự vẽ hình nha .
a, Ta có : AB = AC = 10cm
ABC cân tại A .
Mà trong tam giác cân , đường trung tuyến cx là đường cao nên ta có điều phải chứng minh .