K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

12 10 10 A B C M a)

Vì AM là trung tuyến đến BC, nên có \(BM=CM=\dfrac{12}{2}=6\left(cm\right)\)

Xét \(\Delta\)ABM và \(\Delta\)ACM, có:

AM là cạnh chung

AB=AC (gt)

BM=MC (AM là trung tuyến đến BC)

\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}\)\(\widehat{AMC}\) là 2 góc kề bù, nên:

\(\widehat{AMB}+\widehat{AMC}=180độ\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90\left(độ\right)\)

\(\Rightarrow AM\perp BC\) (đpcm)

Câu b mik lm ko ra số nguyên nhé!!!

Có j thì bn thông cảm nha!bucminh

Chúc bạn học tốt!!!ok

26 tháng 3 2017

Bn tự vẽ hình nha .

a, Ta có : AB = AC = 10cm

ABC cân tại A .

Mà trong tam giác cân , đường trung tuyến cx là đường cao nên ta có điều phải chứng minh .

25 tháng 3 2016

A B C M

Ta có: \(AB^2+AC^2=6^2+8^2=100\)

            \(BC^2=10^2=100\)

 \(\Delta ABC\) có \(AB^2+AC^2+BC^2\left(=100\right)\)

Theo định lí đảo Py-ta-go có \(\Delta ABC\) vuông tại A 

Mà AM là đường trung tuyến của \(\Delta ABC\) 

Do đó: \(AM=\frac{BC}{2}=5\left(cm\right)\)

 

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Có  AB=12cm , AN=8cm => \(\frac{{AN}}{{AB}} = \frac{8}{{12}} = \frac{2}{3}\)

AC=15cm,  AM=10cm => \(\frac{{AM}}{{AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)

=> \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\)

- Xét hai tam giác ABC và tam giác ANM, có

\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\), góc A chung

=> ΔABC ∽ ΔANM' (c.g.c) 

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

6 tháng 4 2017

trả hiểu tí gì !!!

10 tháng 5 2019

a) Ta có \(AB^2+AC^2=8^2+6^2=100=BC^2\)

=> Tam giác ABC cân tại A (định lí Py-ta-go đảo)

b) Áp dụng định lí Py-ta-go trong tam giác ABD vuông tại A có

\(BD^2=AB^2+AD^2\)

\(BD^2=8^2+1^2=65\)

=> \(BD=\sqrt{65}\)

10 tháng 5 2019

Có câu b hông?T.T

a) △ABC là △ vuông. Vì 62+82=102(Định lí Pitago đảo).

b) 4,82.AH2=82⇒AH2=64-23,04=40,96=6.42(vì AH>0)⇒AH=6.4

a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b:\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>AH*BC=AB*AC

=>AH*10=6*8=48

=>AH=4,8cm