Cho \(M=\left(x-1\right)\left(x-2\right)\left(3-x\right).\)Tìm \(x\) dể M<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M <0
TH1:
\(\hept{\begin{cases}x-1< 0\\x+2>0\\3-x>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\\x< 3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\)\(\Leftrightarrow-2< x< 1\)(1)
TH2:
\(\hept{\begin{cases}x+1>0\\x+2< 0\\3-x>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< -2\\x>3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )
TH3:
\(\hept{\begin{cases}x+1>0\\x+2>0\\3-x< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\\x< 3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Leftrightarrow-1< x< 3}\)(2)
Từ (1) và (2) \(\Rightarrow-1< x< 3\)
( ko chắc )
Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)
\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)
Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)
\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)
\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)
\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)
\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)
Tự giải tiếp :D
\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)
\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)
\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)
\(2.\) \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)
\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)
\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)
\(\Rightarrow m=\left\{1;2;3\right\}\)
a) Với \(x\in\left[0;1\right]\) => x - 2 < 0 => |x - 2| = - (x -2)
Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\) (*) với mọi \(x\in\left[0;1\right]\)
+) Xét m - 1 > 0 <=> m > 1
(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2
Kết hợp điều kiện m > 1 =>1 < m \(\le\) 2
+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn
+) Xét m - 1 < 0 <=> m < 1
(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1
Kết hợp các trường hợp : Với 0 \(\le\)m \(\le\) 2 thì .....
b) Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)
Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => xo < 2 => |xo - 2| = - (xo - 2)
xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\)
+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < xo < 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\)
Giải (a) <=> 1 < m < 2
Giải (b) <=> m < 1 hoặc m > 4/3
Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2
+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí
Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)
- Với \(m=\dfrac{1}{2}\) ko thỏa mãn
- Với \(m\ne\dfrac{1}{2}\)
\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)
\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)
Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:
+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)
+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)
Thay \(x=1\) vào ta được:
\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)
Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)
Vậy \(m=1\)