Tìm x, y, z nguyên tố thỏa mãn: xyz < xy + yz + zx.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng thêm 1 vào cả 2 vế rồi phân tích sẽ đc
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=2012\)
Vì \(x\ge y\ge z\)\(\Rightarrow2011\ge\left(z+1\right)^3\)
\(\Rightarrow z+1\le12\)
\(\Rightarrow z\le11\)
P/S: bài này cần thêm điều kiện của x;y;z mới giải đc nhé
Ta có \(xy\left(z+1\right)+y\left(z+1\right)+x\left(z+1\right)+\left(z+1\right)=2012\)
\(\Leftrightarrow\left(z+1\right)\left(xy+y+x+1\right)=2012\)
\(\Leftrightarrow\left(z+1\right)\left[x\left(y+1\right)+\left(y+1\right)\right]=2012\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=1\cdot2\cdot2\cdot503=503\cdot4\cdot1\)
Chỉ có 3 bộ sau thỏa mãn
\(x=502;x=1;z=1\)hoặc \(x=1005;y=1;z=0\)hoặc \(x=2011;y=0;z=0\)
\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)
\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)
\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)
\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)
\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)
Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)
\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)
Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)
Lời giải:
Từ BPT suy ra \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>1\)
Nếu \(x,y,z\geq 3\rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\leq 1\) ( vô lý)
Do đó trong ba số phải tồn tại ít nhất một số bằng 2.
TH1: Cả ba số bằng $2$ (thỏa mãn)
TH2: Có hai số bằng $2$ thì số còn lại luôn thỏa mãn với mọi số nguyên tố.
TH3: Chỉ có một số bằng $2$, các số còn lại lớn hơn $2$ . Giả sử đó là $x$ . Khi đó:
\(\frac{1}{y}+\frac{1}{z}>\frac{1}{2}\)
Nếu \(y,z\geq 5\rightarrow \frac{1}{y}+\frac{1}{z}\leq \frac{2}{5}<\frac{1}{2}\) (vô lý)
Do đó phải tồn tại ít nhất một số bằng $3$
Nếu \(y=z=3\) thì luôn thỏa mãn.
Nếu \(y=3,z>3\Rightarrow \frac{1}{z} > \frac{1}{6}\rightarrow 3< z<6\rightarrow z=5\)
Vậy ........
x=2;y=3;z=5 nhe ban !