K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để T nguyên thì \(2021-x⋮10-x\)

\(\Leftrightarrow x-2021⋮x-10\)

\(\Leftrightarrow x-10\in\left\{1;-1;2011;-2011\right\}\)

hay \(x\in\left\{11;9;2021;-2001\right\}\)

14 tháng 8 2021

t có giá trị lớn nhát làm sao bn

 

a: \(T=\dfrac{2017-x}{10-x}=\dfrac{x-2017}{x-10}\)

Để T nguyên x-10-2007 chia hết cho x-10

=>\(x-10\in\left\{1;-1;3;-3;9;-9;-223;223;669;-669;2007;-2007\right\}\)

=>\(x\in\left\{11;9;13;7;19;1;-213;233;679;-689;2017;-1997\right\}\)

b: Để T lớn nhất thì \(1-\dfrac{2007}{x-10}_{Max}\)

=>2007/x-10 min

=>x-10=2007

=>x=2017

19 tháng 11 2017

Để \(\frac{1}{7-x}\)có giá trị lớn nhất 

=>\(\frac{1}{7-x}=1\)

\(\Leftrightarrow7-x=1\)

\(\Rightarrow x=7-1=6\)

Vậy để MaxA = 1 thì x phải bằng 6

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Toán lớp 6 

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
$M=\frac{2022x-2021}{3x+2}=\frac{674(3x+2)-3369}{3x+2}$

$=674-\frac{3369}{3x+2}$

Để $M$ nhỏ nhất thì $\frac{3369}{3x+2}$ lớn nhất

Điều này xảy ra khi $3x+2$ là số nguyên dương nhỏ nhất.

Với $x$ nguyên thì $3x+2$ là số nguyên dương nhỏ nhất khi $3x+2=2$

$\Leftrightarrow x=0$

\(\dfrac{\sqrt{x}-5}{\sqrt{x-3}}=1-\dfrac{2}{\sqrt{x}-3}=P\)

Để P nguyên thì \(2⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)

\(\begin{matrix}\sqrt{x}-3&-1&-2&1&2\\\sqrt{x}&-2\left(L\right)&1&4&5\\x&&1\left(tm\right)&16\left(tm\right)&25\left(tm\right)\end{matrix}\) 

Mà x nguyên lớn nhất \(\Rightarrow x=25\)

Để P là số nguyên thì

căn x-3-2 chia hết cho căn x-3

=>căn x-3 thuộc Ư(-2)

mà x nguyên lớn nhất

nên căn x-3=2

=>x=25