chứng minh rằng tích của hai hay nhiều số chẵn là 1 số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
a) và b) mik ko bt làm.
c) Ta có a & b là số chẵn nên a*b = \(\frac{1}{2}a\cdot2.\frac{1}{2}b\cdot2\)= 4(\(\frac{1}{2}a\cdot b\)) suy ra đpcm
d) giống c ( \(2\cdot\frac{1}{2}a\cdot b\))
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
gọi số chẵn thứ nhất là 2n
số chẵn thứ 2 là 2n+2
Tích của chúng là A(n) = 2n (2n + 2 ). Ta có 8 = 4.2
Do đó ta viết : A(n)= 4.n (n+1)
A(n) là tích của hai thừa số : một thừa số là 4, chia hết cho 4 và một thừa số n (n+1) chia hết cho 2. Vì vậy A(n) = 4.n (n+1) chia hết cho 4.2= 8 (đpcm)
Gọi 2 số lẻ là 2k+1 và 2h+1
Tích chúng là:
\(\left(2k+1\right)\left(2h+1\right)=4kh+2k+2h+1=2.\left(2kh+k+h\right)+1\) là 1 số lẻ => đpcm