K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 8 2021

Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được

Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý

a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)

b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)

NV
23 tháng 10 2021

\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.5.4=65\)

15 tháng 4 2022

\(A=\left(xy^3\right)\left(-\dfrac{3}{4}x^5x^4\right)\cdot\dfrac{8}{9}x^2y^3\)

\(=-\dfrac{2}{3}x^{12}y^6\)

Thay x = -1 và y = 1 vào biểu thức ta được :

\(A=-\dfrac{2}{3}\cdot\left(-1\right)^{12}.1^6=-\dfrac{2}{3}\)

Vậy : Tại x = -1 và y = 1 thì A có giá trị là \(\dfrac{2}{3}\)

15 tháng 4 2022

Cho hỏi cách thu gọn

 

a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)

=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)

8 tháng 9 2016

Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):

\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)

                                                  \(\Rightarrow\) \(x-y=0\)

                                                  \(\Rightarrow\left(x-y\right)^3=0^3=0\)