K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔACH vuông tại H và ΔBCA vuông tại A có

góc C chung

Do đó: ΔACH\(\sim\)ΔBCA

Suy ra: AH/BA=AC/BC

hay \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔHAC có 

I là trung điểm của HA

K là trung điểm của HC

DO đó: IK là đường trung bình

=>IK//AC

=>ΔHIK\(\sim\)ΔHCA

mà ΔHCA\(\sim\)ΔACB

nên ΔHIK\(\sim\)ΔACB

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021

a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có

góc C chung

Do đo: ΔACH\(\sim\)ΔBCA
\(S_{ACB}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

=>\(AH\cdot BC=AB\cdot AC\)

b: Xét ΔHAC có 

HK/HC=HI/HA

nên KI//AC
=>ΔHKI\(\sim\)ΔHCA

=>ΔHKI\(\sim\)ΔACB

c: \(AE\cdot AF\cdot BC=\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}\cdot BC\)

\(=AH^4\cdot\dfrac{BC}{AB\cdot AC}=AH^4\cdot\dfrac{BC}{AH\cdot BC}\)

\(=\dfrac{AH^4}{AH}=AH^3\)

15 tháng 3 2021

a/ Xét \(\Delta HAC\) và \(\Delta ABC\) có

\(\widehat{BAH}=\widehat{ACH}\) (Vì cùng phụ với \(\widehat{HAC}\) ) => \(\Delta BAH\) đồng dạng với \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH.BC=AB.AC\left(dpcm\right)\)

b/ Ta có

\(HK=CK;HI=AI\) => KI là đường trung bìcuarHHAC tg HAC => KI//AC\(\Rightarrow\widehat{HKI}=\widehat{BCA}\)

Xét tg vuông HKI và tg vuông ABC có

\(\widehat{HKI}=\widehat{BAC}\left(cmt\right)\) => tg HKI đồng dạng với tg ABC

loading...  loading...  loading...  

27 tháng 10 2018

chỉnh sửa tí ạ"gọi I, K  là lần lượt là trung điểm của HC và HB"

22 tháng 10 2023

loading...   a) Tứ giác ADHE có:

∠AEH = ∠ADH = ∠HAE = 90⁰ (gt)

⇒ ADHE là hình chữ nhật

⇒ AH = DE

b) BHD vuông tại D

I là trung điểm của HB (gt)

⇒ ID = IH = BH : 2

⇒ ∆IDH cân tại I

⇒ ∠IDH = ∠IHD

⇒ ∠HID = 180⁰ - (∠IDH + ∠IHD)

= 180⁰ - 2∠IHD (1)

∆CEH vuông tại E

K là trung điểm HC (gt)

⇒ KE = KC = HC : 2

⇒ ∆KEC cân tại K

⇒ ∠KEC = ∠KCE

⇒ ∠CKE = 180⁰ - (∠KEC + ∠KCE)

= 180⁰ - 2∠KEC (2)

Do HD ⊥ AB (gt)

AC ⊥ AB (gt)

⇒ HD // AC

⇒ ∠IHD = ∠KCE (đồng vị)

⇒ 2∠IHD = 2∠KCE (3)

Từ (1), (2) và (3) ⇒ ∠CKE = ∠HID

Mà ∠CKE và ∠HID là hai góc đồng vị

⇒ DI // KE