cho tam giác ABC AB =AC đường cao AH,Kẻ HE vuông góc AC. GỌI O là trung điểm của EH ,I LÀ TRUNG ĐIỂM CỦA EC
CMR IO \(\perp\) AH
CMR AO \(\perp\) BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác EHC. có;
+ O và I là trung điểm HE và EC => OI là đường trung bình tam giác EHC
=> OI//HC
Mà HC⊥AH
=>OI⊥AH (đpcm)
b, Xét tam giác ABC có :
AH là đường cao đồng thời là trung tuyến ứng với đáy BC nên H là trung điểm BC
Xét tam giác BEC, có:
H và I là trung điểm BC và CE => HI là đường trung biình tam giác BEC
=> HI//BE. (1)
Xét tam giác AHI có :OI⊥AH, HE⊥AI mà HE và IO cắt nhau ở O nên O là trực tâm của △AHI
=> AO⊥HI (2)
+ Từ (1) và (2) ta có AO⊥BE
a, có O là TĐ của HE
I là trung điểm EC
OE/EH= EI/EC=1/2
⇒OI song² HC
MÀ HC vuông góc AH
⇒ OI vuông góc AH
b, xét ΔAHI
có DI vuông góc AH ⇒ OI là đường cao
HE vuông góc AI ⇒ HE là đường cao
⇒ O là trực tâm Δ AHI
⇒ AO là đường cao Δ AHI
⇒ AO vuông góc HI (1)
Xét Δ ABC cân tại A
có AH là đường cao
⇒ AH là trung tuyến
H là TĐ của BC
⇒ HC/BC = 1/2
có I là TĐ EC ⇒ IC/EC = 1/2
⇒ HC / BC = IC/EC ⇒HI song² BE (2)
Từ (1), (2) ⇒ AO vuông góc với BE
T.I.C.K CHO MÌNH VỚI NHÉ. MÌNH ĐẦU
a, xet tam giac EHC . co
+ O va I la trung diem HE va EC => OI la duong trung binh tam giac EHC
=> OI//HC
ma HC va AH
=> OI va AH [dpcm]
b, xet tam giac ABC ta co :
AH la duong cao dong thoi la trung tuyen ung voi day BC nen H la trung dim BC
xet tam giac BEC . ta co
H va I la trung diem BC va CE => HI la trung binh tam giac BEC
xet tam gic AIH co : OI va AH , HE va IO cat nhau cat nhau o O nen O la truc tam cua tam giac AHI
tu do [1] va [ 2] ta co AO va BE
a. Xét tam giác HEC có O, I lần lượt là trung điểm của HE, CE nên OI là đường trung bình của tam giác HEC.
=> OI song song HC mà AH vuông góc với HC
=> OI vuông góc với AH
b)
Gọi giao điểm của BE với AH và AO lần lượt là M, N
Xét HAB và EHC
=> AO vuông góc với BE
HỌC TỐT NHÉ
a) Xét △EHC có : IE = IC
OE = OH
\(\Rightarrow\)OI là đương trung bình của △EHC
\(\Rightarrow\)OI // HC
Mà AH ⊥ HC
\(\Rightarrow\)OI ⊥ AH (ĐPCM)
b) Nối H với I , kéo dài OI ⊥ AH
Xét △AHI có : HE ⊥ AI tại E
IK ⊥ AH tại K
HE ∩ IK tại O
\(\Rightarrow\) O là trực tâm của tam giác AHI
\(\Rightarrow\)Đường AO là đường cao thứ 3 của tam giác
\(\Rightarrow\) AO ⊥ HI (1)
Vì △ABC cân tại A có AH là đường cao
\(\Rightarrow\)AH đồng thời là đường trung tuyến
\(\Rightarrow\)HB = HC
Xét △BEC có : IE = IC
HB = HC
\(\Rightarrow\)HI là đường trung bình của △BEC
\(\Rightarrow\)HI // BE (2)
Từ (1) và (2) suy ra : AO ⊥ BE (ĐPCM)