phân tích thành nhân tử
a) (x^2 + x)^2 + 3(x^2 + x) + 2
b) x(x + 1)(x + 2)(x + 3) + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=x^2\left(x-2\right)\)
b: \(=\left(x-3\right)\left(2x-9\right)\)
\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
\(a,15a^2b^3+5a^3b^2=5a^2b^2\left(3b+a\right)\\ b,x^2-2x+1-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
a) 15a2b3+5a3b2=5a2b2(3b+a)
b) x2-2x+x-y2=( x2-y2)-(2x+x)
=(x-y)(x+y)-x(2-1)
=(x-y)(x+y)-x3
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
a) \(4\left(x+y\right)\)
b) \(\left(x-3y\right)^2\)
c) \(x^3-x-x^2+1=x\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\)
a) \(4 (x + y)\)
b) \((x - 3y)^2\)
c) \(x^3 - x - x^2 + 1 = x (x^2 - 1) - (x^2 - 1) = (x^2 - 1) (x - 1) = (x - 1) (x + 1) (x - 1)\)
\(a,x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\\ b,x^2-2x-15=\left(x^2-5x\right)+\left(3x-15\right)=x\left(x-5\right)+3\left(x-5\right)=\left(x+3\right)\left(x-5\right)\\ c,x^2-4+\left(x-2\right)^2=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\)
\(d,x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\)
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
a: (3x-5)^2-(x+3)^2
=(3x-5-x-3)(3x-5+x+3)
=(2x-8)(4x-2)
=2(x-4)*2*(2x-1)
=4(x-4)(2x-1)
b: (2x+1)^2-4(x-3)^2
=(2x+1)^2-[2*(x-3)]^2
=(2x+1)^2-(2x-6)^2
=(2x+1-2x+6)(2x+1+2x-6)
=(4x-5)*7